The aim of this paper is to explain the probability of the existence of five regular and thirteen semi regular polyhedra; and we indicate that among these thirteen geometrical figures there are only three lattice polyhedra. Also in this work we present a proof of the existence of three regular lattice polygons.
Q. Mohammed, N., H. Hamko, Q., & H. Mohammed, N. (2011). Semi Regular Lattice Polyhedra. Kirkuk Journal of Science, 6(1), 103-113. doi: 10.32894/kujss.2011.42543
MLA
Nazaneen Q. Mohammed; Qumry H. Hamko; Nafya H. Mohammed. "Semi Regular Lattice Polyhedra". Kirkuk Journal of Science, 6, 1, 2011, 103-113. doi: 10.32894/kujss.2011.42543
HARVARD
Q. Mohammed, N., H. Hamko, Q., H. Mohammed, N. (2011). 'Semi Regular Lattice Polyhedra', Kirkuk Journal of Science, 6(1), pp. 103-113. doi: 10.32894/kujss.2011.42543
VANCOUVER
Q. Mohammed, N., H. Hamko, Q., H. Mohammed, N. Semi Regular Lattice Polyhedra. Kirkuk Journal of Science, 2011; 6(1): 103-113. doi: 10.32894/kujss.2011.42543