Let R be a commutative ring with identity and M be a unitary R-module. An R-module M is called finitely annihilated if there exists a finitely generated R-submodule N of M such that ann(M)=ann(N).Our main purpose in this work is to study this property in some known classes of modules such as quasi-injective, multiplication and other modules. We prove that: 1-If M is a quasi-injective R-module, then M is finitely annihilated if and only if M is finendo. 2-If M is a multiplication R-module, then M is finitely annihilated if and only if M is finitely generated. 3-M is a faithful finitely annihilated R-module if and only if M is a compactly faithful R-module.
Mijbass, A. S., Mohammadal, H. K. I., & saeed, N. A. (2008). On Finitely Annihilated Modules. Kirkuk Journal of Science, 3(2), 117-133. doi: 10.32894/kujss.2008.42471
MLA
Ali S. Mijbass; Hibat K. i Mohammadal; Najlaa A. saeed. "On Finitely Annihilated Modules". Kirkuk Journal of Science, 3, 2, 2008, 117-133. doi: 10.32894/kujss.2008.42471
HARVARD
Mijbass, A. S., Mohammadal, H. K. I., saeed, N. A. (2008). 'On Finitely Annihilated Modules', Kirkuk Journal of Science, 3(2), pp. 117-133. doi: 10.32894/kujss.2008.42471
VANCOUVER
Mijbass, A. S., Mohammadal, H. K. I., saeed, N. A. On Finitely Annihilated Modules. Kirkuk Journal of Science, 2008; 3(2): 117-133. doi: 10.32894/kujss.2008.42471