Study of Spectroscopic and Vibrational Properties of the Phthalocyanine Molecule (C_32 H_18 N_8) and Magnesium Phthalocyanine (C_32 H_16 MgN_8) by Using Quantum Programs

Document Type : Research Paper

Authors

Department of Physics, College of Education for Pure Science, Kirkuk University, Kirkuk, Iraq.

Abstract

In this paper calculation spectroscopic and vibrational properties using Semi-empirical method, through the results showed the IR spectra, the value of the lowest amount of total energy for H2Pc molecule was equal to  for (C16-H41) and for (C27-H43), for MgPc moleculeis equal to  for (C17-H42) and for (C28-H44), and after that equilibrium distance is ( ) for each molecule. The theoretical and experimental results were compared to the energy gap, for H2Pc (5.67 eV), (5.04 eV), for MgPc (5.043 eV), (2.73 eV), respectively.

Keywords


[1]          B. Joseph and C. S. Menon, "Studies on the Optical Properties and Surface Morphology of Nickel Phthalocyanine Thin Films", E-Journal of Chemistry, 4(2), 255 (2007).
 
[2]          M. T. Hussein, E. M. Nasir and A. H. Al-Aarajiy, "Study on the UV-Visible of Ni-Phthalocyanine thin film Optical Properties", International Journal of Thin Film Science and technology, 1(2), 71 (2012).
 
[3]          M. A. Dahlen, "The Phthalocyanine; A New Class of Synthetic Pigments and Dyes", Industrial and Engineering Chemistry, 31(7), 840 (1939).
 
[4]          W. Herbst and K. Hunger, "Industrial Organic Pigments", 3rd Edition, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2004).
 
[5]          X. Zhang, Y. Zhang and J. Jiang, "Towards Clarifying The N-M Vibrational Nature Of Metallo-Phthalocyanines Infrared Spectrum Of Phthalocyanine Magnesium Complex: Density Functional Calculations", Spectrochimica Acta, 60, 2195 (2004).
 
[6]          R. Seoudi, G. S. El-Bahy and Z. A. El-Sayed, "Ultraviolet and Visible Spectroscopic Studies of Phthalocyanine and Its Complexes Thin Films", Optical Materials, 29, 304 (2006).
 
[7]          F. Li, Q. Zheng, G. Yang, N. Dai and P. Lu, "Spectrum Of Copper Phthalocyanine: Experimental and Semi-Empirical Quantum Chemical Calculations", Physica B Condensed Matter, 403, 1704 (2008).
 
[8]          I. Z. Hassan, M. N. Fat-hulla and A. Sh. Mohammed, "Semi-Empirical Investigation of Geometrical and Electronic Properties Of Transition Metal-Phthalocyanines (Metal = Co, Ni, Cu)", Diyala Journal For Pure Sciences, 11(1), 41 (2015).
 
[9]          S. Arslan, "Phthalocyanine: Structure, Synthesis, Purification and Application", Journal of Life Sciences, 6(2/2), 188 (2016).
 
[10]      K. J. Hamam and M. I. Alomari, "A Study Of The Optical Band Gap Of Zinc Phthalocyanine Nanoparticles Using UV-Vis Spectroscopy and DFT Function", Original Article, 7, 261 (2017).
 
[11]      A. S. Christensen, T. Kubar and M. Elstner, "Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications", American Chemical Society, 116(9), 5301 (2016).
 
[12]      K. A. Jassim and E. A. Mahmud, "Molecular Physics", 1st Edition, parlor of books for printing and publishing, Iraq (1992).
 
[13]      S. Pengmanayol and T. Osotchan, "Optical Properties of Metal Free and Metal Phthalocyanine by Molecular Band Calculation ", Advanced Materials Research, 55(57), 677 (2008).
 
[14]      T. G. Gopinathan and C. S. Menon, "Studies on the Electrical and Optical Properties of Magnesium Phthalocyanine Thin Films", Journal of Chemistry, 1(5), 231 (2004).
 
[15]      K. N. Narayanan and C. S. Menon, "Electrical and optical studies on nickel Phthalocyanine thin films", Journal of Materials Science, 19(2000), 2003 (2000).
 
[16]      G. G. Jarrett, A. Talib and A. J. Hammadi, "Molecular Structure Theory", 1st Edition, parlor of books for printing and publishing, Iraq (1983).