تحديد بعض المعايير الدموية والكيموحيوية وتعدد الأشكال الجينية لمستقبلات في مدينة أربيل COVID-19 الاكراد في مرضى فيتامين د

نوع المقالة : بحث

المؤلفون

1 قسم علوم الحياة، كاية التربية، جامعة صلاح الدين، اربيل، العراق.

2 قسم علوم الحیاة، کلیة التربیة، جامعة صلاح الدین، اربیل، العراق.

الملخص

مرض فيروس كورونا  الذي بدأ عام 2019 هو مرض معد جديد يسببه SARS-COV-2 وقد أثر على الفرد على مستوى العالم ، و هو مرتبط بتغيرات المعايير الدموية والكيموحيوية. كان الهدف من هذه الدراسة هو تقييم العلاقة المحتملة بين المعايير الدموية والكيموحيوية  وشدة المرض.  اذ تم جمع ما مجموعه 200 مسحة من البلعوم الأنفي وعينات دم كاملة من الأفراد المشتبه في إصابتهم ب Cov-2 والمتطوعين الأصحاء كعنصر تحكم من الجنسين مقسمة الي أربع مجموعات 50  مريضا لكل مجموعة خفيف ومعتدل وشديد و 50 متطوعا سليما. أظهرت الدراسة الحالية أن الإناث 82 (55٪) تأثرن بشكل متكرر أكثر من الذكور  68(45٪ ( زادت المعايير الدموية بما في ذلك عدد خلايا الدم البيض وعدد المحببات وعرض كريات الدم الحمر (RDW%) بشكل ملحوظ p < 0.05 ، بينما انخفض عدد الخلايا الليمفاوية بشكل ملحوظ عند مقارنته بمجموعة التحكم. ظهرت فروق معنوية في تركيز خضاب الدم وحجم خلايا الدم المتراصة وعدد كريات الدم الحمر ومؤشراته عند مقارنة كلا الجنسين بمجموعة التحكم .فيما يتعلق بالمعايير الكيموالحيوية بما في ذلك فيتامين د في المصل، والفيريتين، و D-dimer ، والبروكالسيتونين ، واختبارات وظائف الكبد، انخفض فيتامين د ، في حين زاد فيريتين، و D-dimer ، والبروكالسيتونين ، وإنزيمات الكبد بشكل ملحوظ في مجموعة مرضى CoV-2 مقارنة بمجموعة التحكم. وفقا لمستقبلات فيتامين د ، فإن تعدد الأشكال الجينية في النمط الجيني Bb لمرضى  CoV-2 كان على الأرجح مرتبطا وبشدة بالإصابة بفيروس CoV-2  مع جميع مراحل العدوى الثلاث. نستنتج من الدراسة الحالية بأن شدة CoV-2  ارتبطت بزيادة عدد الخلايا البيض،وقلة اللمفاويات والمؤشرات الحيوية هي أفضل المتنبئين ب Cov-2 الشديد، مع ارتباط قوي بتعدد الشكل الجيني BsmI مع شدة مرض  CoV-2

الكلمات الرئيسة

الموضوعات


[1] Organization WH., interim guidance. World Health Organization, 2020.
[2] II. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, MU. Kraemer, and K. Khan. Pneumonia of unknown aetiology in wuhan, china: potential for international spread via commercial air travel. Journal of travel medicine, 27(2):taaa008, 2020, doi:10.1093/jtm/taaa008.
[3] B. Abdulqadir Ali. Epidemiological approach of sarscov2 in the first month of appearance in the kurdistan region of iraq. European Journal of Molecular Clinical
Medicine, 7(11): 2853–65, 2020.
[4] Organization WH., Living guideline, Retrieved. World Health Organization, 2023.
[5] M. Narasimhan JM. Crawford T. McGinn KW. Davidson S. Richardson, JS. Hirsch and et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with covid-19 in the new york city area. Journal of the American Medical Association, 323(20): 2052–9, 2020, doi:10.1001/jama.2020.6775.
[6] G. Grasselli, A. Zangrillo, A. Zanella, M. Antonelli, L. Cabrini, A. Castelli, and et al. Baseline characteristics and outcomes of 1591 patients infected with sars-cov-2
admitted to icus of the lombardy region, italy. Journal of the American Medical Association, 323(16): 1574–81, 2020, doi:10.1001/jama.2020.5394.
[7] A. Khalid, M. Ali Jaffar, T. Khan, R. Abbas Lail, S. Ali, G. Aktas, and et al. Hematological and biochemical parameters as diagnostic and prognostic markers in sarscov-2 infected patients of pakistan: a retrospective comparative analysis. Hematology, 26(1): 529–42, 2021, doi:10.1080/16078454.2021.1950898.
[8] C. Qin, L. Zhou, Z. Hu, S. Zhang, S. Yang, Y. Tao, and et al. Dysregulation of immune response in patients with coronavirus 2019 (covid-19) in wuhan, china. clinical infectious diseases. An official publication of the Infectious Diseases Society of America, 71(15): 762–8, 2020, doi:10.1093/cid/ciaa248.
[9] B. Zhu, X. Feng, C. Jiang, S. Mi, L. Yang, Z. Zhao, and et al. Correlation between white blood cell count at admission and mortality in covid-19 patients: a retrospective study. BMC infectious diseases, 21(1): 574, 2021, doi:10.1186/s12879-021-06277-3.
[10] S. Jandaghian, A. Vaezi, A. Manteghinejad, M. Nasirian, G. Vaseghi, and S. Haghjooy Javanmard. Red blood cell distribution width (rdw) as a predictor of in hospital mortality in covid-19 patients; a cross sectional study Archives of academic emergency medicine, 9(1): e67, 2021, doi:10.22037/aaem.v9i1.1325.
[11] D. Bikle. Nonclassic actions of vitamin d. The Journal of clinical endocrinology and metabolism, 94(1): 26–34, 2009, doi:10.1210/jc.2008-1454.
[12] HA. Dissanayake, NL. de Silva, M. Sumanatilleke, SDN. de Silva, Gamage, C. Dematapitiya, and et al. Prognostic and therapeutic role of vitamin d in covid-19: Systematic review and meta-analysis. The Journal of Clinical Endocrinology Metabolism, 107(5): 1484–502, 2022, doi:10.1210/clinem/dgab892.
[13] R. Ghasemian, A. Shamshirian, K. Heydari, M. Malekan, R. Alizadeh-Navaei, MA. Ebrahimzadeh, and et al. The role of vitamin d in the age of covid-19: A systematic review and meta-analysis. International journal of clinical practice, 75(11): e14675, 2021, doi:10.1111/ijcp.14675.
[14] M. Pereira, A. Dantas Damascena, LM. Galvao Azevedo, ˜T. de Almeida Oliveira, and J. da Mota Santana. Vitamin d deficiency aggravates covid-19: systematic review and meta-analysis. Critical reviews in food science and nutrition, 62(5): 1308–16, 2022, doi:10.1080/10408398.2020.1841090.
[15] S. Zelzer, F. Pruller, P. Curcic, Z. Sloup, M. Holter, ¨M. Herrmann, and et al. metabolites and clinical outcome in hospitalized covid-19 patients. Nutrients, 13(7): 2129, 2021, doi:10.3390/nu13072129.
[16] V. Contreras-Bol´ıvar, B. Garc´ıa-Fontana, C. Garc´ıaFontana, and M. Munoz Torres. Vitamin d and covid-19: ˜where are we now? Postgraduate Medicine, 1-13, 2021, doi:10.1080/00325481.2021.2017647.
[17] K. Kaushal, H. Kaur, Sarma, A. Bhattacharyya, DJ. Sharma, M.Prajapat, and et al. Serum ferritin as a predictive biomarker in covid-19. a systematic review, metaanalysis and meta-regression analysis. Journal of critical care, 67: 172–81, 2022, doi: 10.1016/j.jcrc.2021.09.023.
[18] P. Mehta, DF. McAuley, M. Brown, E. Sanchez, RS. Tattersall, and JJ. Manson. Covid-19: consider cytokine storm syndromes and immunosuppression. The lancet, 395(10229): 1033–4, 2020, doi: 10.1016/S0140-6736(20)30628-0.
[19] S. Shah, K. Shah, SB. Patel, FS. Patel, M. Osman, P. Velagapudi, and et al. Elevated d-dimer levels are associated with increased risk of mortality in coronavirus disease 2019: A systematic review and meta-analysis. Cardiology in Review, 28(6).
[20] A. Farasani. Biochemical role of serum ferratin and d-dimer parameters in covid 19 diagnosis. Saudi journal of biological sciences, 28(12): 7486–90, 2021, doi: 10.1016/j.sjbs.2021.08.040.
[21] J. Thachil, M. Cushman, A. Srivastava, and P. Angchaisuksiri. A proposal for staging covid19 coagulopathy. Research and practice in thrombosis and haemostasis, 4(5): 731–6, 2020, doi: 10.1002/rth2.12372.
[22] C. Vanhomwegen, I. Veliziotis, S. Malinverni, D. Konopnicki, P. Dechamps, M. Claus, and et al. Procalcitonin accurately predicts mortality but not bacterial infection in covid-19 patients admitted to intensive care unit. Irish Journal of Medical Science, 190(4): 1649–52, 2021, doi:10.1007/s11845-020-02485-z.
[23] JB. Xu, C. Xu, RB. Zhang, M. Wu, CK. Pan, XJ. Li, and et al. Associations of procalcitonin, c-reaction protein and neutrophil-to-lymphocyte ratio with mortality in hospitalized covid-19 patients in china. Scientific reports, 10(1): 15058, 2020, doi:10.1038/s41598-020-72164-7.
[24] WJ. Guan, WH. Liang, Y. Zhao, HR. Liang, ZS. Chen, YM. Li, and et al. Comorbidity and its impact on 1590 patients with covid-19 in china: a nationwide analysis. The European respiratory journal, 55(5).
[25] MN. Bangash, J. Patel, and D. Parekh. Covid-19 and the liver: little cause for concern. The lancet Gastroenterology hepatology, 20205(6): 529–30, 2020, doi: 10.1016/S2468-1253(20)30084-4.
[26] PP. Bloom, EA. Meyerowitz, Z. Reinus, M. Daidone, J. Gustafson, AY. Kim, and et al. Liver biochemistries in hospitalized patients with covid-19. Hepatology, 73(3): 890–900, 2021, doi: 10.1002/hep.31326.
[27] Y. Li, Y. Hu, J. Yu, and T. Ma. Retrospective analysis of laboratory testing in 54 patients with severe- or criticaltype 2019 novel coronavirus pneumonia. Laboratory Investigation, 100(6): 794–800, 2020, doi: 10.1038/s41374-020-0431-6.
[28] Q. Cai, D. Huang, H. Yu, Z. Zhu, Z. Xia, Y. Su, and et al. Covid-19: Abnormal liver function tests. Journal of Hepatology, 73(3): 566–74, 2020, doi:10.1016/j.jhep.2020.04.006.
[29] H. Zhang, H. Han, T. He, KE. Labbe, AV. Hernandez, H. Chen, and et al. Clinical characteristics and outcomes of covid-19–infected cancer patients: a systematic review and meta-analysis. Journal of the National Cancer Institute, 113(4): 371–80, 2021, doi:10.1093/jnci/djaa168.
[30] S. Zheng, J. Yang, X. Hu, M. Li, Q. Wang, RCA. Dancer, and et al. Vitamin d attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits tgf-β induced epithelial to mesenchymal transition. Biochemical Pharmacology, 177: 113955, 2020, doi:10.1016/j.bcp.2020.113955.
[31] K. Baynes, B. Boucher, E. Feskens, and D. Kromhout. Vitamin d, glucose tolerance and insulinaemia in elderly men. Diabetologia, 40(3): 344–7, 1997, doi:10.1007/s001250050685.
[32] S. Raimondi, E. Pasquali, P. Gnagnarella, D. Serrano, D. Disalvatore, HA. Johansson, and et al. Bsmi polymorphism of vitamin d receptor gene and cancer risk: a comprehensive meta-analysis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 769: 17–34, 2014, doi:10.1016/j.mrfmmm.2014.06.001.
[33] KA. Maulood. Estimation of vitamin d receptor gene polymorphism in type 2 diabetes mellitus patients in erbil city. Cellular and Molecular Biology, 67(3): 76–84, 2021, doi:10.14715/cmb/2021.67.3.10.
[34] H. A. Dissanayake, N. L. De Silva, M. Sumanatilleke, S. D. N. De Silva, K. K. K. Gamage, C. Dematapitiya, D. C. Kuruppu, P. Ranasinghe, S. Pathmanathan, and P. Katulanda. Prognostic and therapeutic role of vitamin d in covid-19: Systematic review and meta-analysis. The Journal Of Clinical Endocrinology Metabolism, 107: 1484–1502, 2022, doi:10.1210/Clinem/Dgab892.
[35] R. Abdollahzadeh, MH. Shushizadeh, M. Barazandehrokh, S. Choopani, A. Azarnezhad, S. Paknahad, and et al. Association of vitamin d receptor gene polymorphisms and clinical/severe outcomes of covid-19 patients. infection. Genetics and Evolution, 96: 105098, 2021, doi:10.1210/Clinem/Dgab892.
[36] D. Akdogan, M. Guzel, D. Tosun, and O. Akpinar. Diagnostic and early prognostic value of serum crp and ldh levels in patients with possible covid-19 at the first admission. The Journal of Infection in Developing Countries, 15(06): 766–72, 2021, doi:10.3855/jidc.14072.
[37] T. Wiggill, E. Mayne, J. Vaughan, and S. Louw. Overview of the haematological effects of covid-19 infection. Clinical, Biological and Molecular Aspects of COVID-19, 163-72.
[38] L. Tan, Q. Wang, D. Zhang, J. Ding, Q. Huang, Y-Q. Tang, and et al. Lymphopenia predicts disease severity of covid-19: a descriptive and predictive study. Signal transduction and targeted therapy, 5(1): 1–3, 2020, doi:10.1038/s41392-020-0148-4.
[39] X. Yang, Y. Yu, J. Xu, H. Shu, H. Liu, Y. Wu, and et al. Clinical course and outcomes of critically ill patients with sars-cov-2 pneumonia in wuhan, china: a single-centered, retrospective, observational study. The Lancet Respiratory Medicine, 8(5): 475–81, 2020, doi:10.1016/S2213-2600(20)30079-5.
[40] H. Xu, L. Zhong, J. Deng, J. Peng, H. Dan, X. Zeng, and et al. High expression of ace2 receptor of 2019-ncov on the epithelial cells of oral mucosa. International journal of oral science, 12(1): 1–5, 2020, doi:10.1038/s41368-020-0074-x.
[41] IA. I. Abdullah and ZC. ZC Chapanduka. The pathophysiology of the haematological manifestations of covid-19: a review. The Journal of Medical Laboratory Science and Technology of South Africa, 2(2): 54–8, 2020.
[42] B. Bai, Z. Xu, Y. Hu, M. Qu, J. Cheng, S. Luo, and et al. Patient hematology during hospitalization for viral pneumonia caused by sars-cov-2 and non-sars-cov-2 agents: a retrospective study. European Journal of Medical Research, 26(1): 1–11, 2021, doi:10.1186/s40001-021-00515-9.
[43] M. Alshahawey, M. Raslan, and N. Sabri. Sex-mediated effects of ace2 and tmprss2 on the incidence and severity of covid-19; the need for genetic implementation. Current Research in Translational Medicine, 68(4): 149–50, 2020,
doi:10.1016/j.retram.2020.08.002.
[44] A. D’Avolio, V. Avataneo, A. Manca, J. Cusato, A. De Nicolo, R. Lucchini, and et al. 25-hydroxyvitamin `d concentrations are lower in patients with positive pcr for sars-cov-2. Nutrients, 12(5): 1359, 2020, doi:10.3390/nu12051359.
[45] A. Alunno, F. Carubbi, and J. Rodr´ıguez-Carrio. Storm, typhoon, cyclone or hurricane in patients with covid19? beware of the same storm that has a different origin. Rheumatic Musculskeletal Diseases, 6(1): e001295, 2020, doi:10.1136/rmdopen-2020-001295.
[46] I. Huang, R. Pranata, MA. Lim, A. Oehadian, and B. Alisjahbana. C-reactive protein, procalcitonin, d-dimer, and ferritin in severe coronavirus disease2019: a meta-analysis. Therapeutic advances in respiratory disease, 14: 1753466620937175, 2020, doi:10.1177/1753466620937175.
[47] Y. Yao, J. Cao, Q. Wang, Q. Shi, K. Liu, Z. Luo, and et al. D-dimer as a biomarker for disease severity and mortality in covid-19 patients: a case control study. Journal of intensive care, 8(1): 1–11, 2020, doi:10.1186/s40560-020-00466-z.
[48] D. Agnes, LYC. JM, L. Kreuziger, M. Murphy, T. Gernsheimer, Y. Lin, and et al. Covid-19 and coagulopathy: frequently asked questions. American Society of Hematology, COVID-19 Resources COVID-19 and Coagulopathy Version, 7.
[49] BS. Joly, V. Siguret, and A. Veyradier. Understanding pathophysiology of hemostasis disorders in critically ill patients with covid-19. Intensive care medicine, 46(8): 1603–6, 2020, doi:10.1007/s00134-020-06088-1.
[50] B. Mouhat, M. Besutti, K. Bouiller, F. Grillet, C. Monnin, F. Ecarnot, and et al. Elevated d-dimers and lack of anticoagulation predict pe in severe covid-19 patients. European Respiratory Journal, 56(4).
[51] S. Ventura-D´ıaz, JV. Quintana-Perez, A. Gil-Boronat, ´M. Herrero-Huertas, L. Gorospe-Sarasua, J. Montilla, ´and et al. A higher d-dimer threshold for predicting pulmonary embolism in patients with covid-19: a retrospective study. Emergency Radiology, 27(6): 679–89, 2020, doi:10.1007/s10140-020-01859-1.
[52] SE. Johnson, E. Pai, A. Voroba, NW. Chen, and A. Bahl. Examining d-dimer and empiric anti-coagulation in covid19-related thrombosis. Cureus, 14(7): e26883, 2022, doi:10.7759/cureus.26883.
[53] W j. Guan, Z y. Ni, Y. Hu, W h. Liang, C q. Ou, J x. He, and et al. Clinical characteristics of coronavirus disease 2019 in china. New England journal of medicine, 382(18): 1708–20, 2020, doi:10.1056/NEJMoa2002032.
[54] J. Thachil, N. Tang, S. Gando, A. Falanga, Cattaneo, M. Levi, and et al. Isth interim guidance on recognition and management of coagulopathy in covid-19. Journal of Thrombosis and Haemostasis, 18(5): 1023–6, 2020,
doi:10.1111/jth.14810.
[55] JJ. Choi and MW. McCarthy. Novel applications for serum procalcitonin testing in clinical practice. Expert Review of Molecular Diagnostics, 18(1): 27–34, 2018, doi:10.1080/14737159.2018.1407244.
[56] A. Rodr´ıguez, LF. Reyes, J. Monclou, B. Suberviola, M. Bod´ı, G. Sirgo, and et al. Relationship between acute kidney injury and serum procalcitonin (pct) concentration in critically ill patients with influenza infection. Medicina Intensiva, 42(7): 399–408, 2018, doi:10.1016/j.medin.2017.12.004.
[57] JJ. Zhang, X. Dong, YY. Cao, YD. Yuan, YB. Yang, YQ. Yan, and et al. Clinical characteristics of 140 patients infected with sars-cov-2 in wuhan, china. Allergy, 75(7): 1730–41, 2020, doi:10.1111/all.14238.
[58] A. Kumar, E. Karn, K. Trivedi, P. Kumar, G. Chauhan, A. Kumari, and et al. Procalcitonin as a predictive marker in covid-19: A systematic review and meta-analysis. PloS one, 17(9): e0272840, 2022, doi:: 10.1371/journal.pone.0272840.
[59] S. Gautam, AJ. Cohen, Y. Stahl, P. Valda Toro, GM. Young, R. Datta, and et al. Severe respiratory viral infection induces procalcitonin in the absence of bacterial pneumonia. Thorax, 75(11): 974, 2020, doi:10.1136/thoraxjnl-2020-214896.
[60] Y. Shen, C. Cheng, X. Zheng, Y. Jin, G. Duan, M. Chen, and et al. Elevated procalcitonin is positively associated with the severity of covid-19: A meta-analysis based on 10 cohort studies. Medicina, 57(6): 594, 2021, doi:10.3390/medicina57060594.
[61] A. Bertolini, IP. van de Peppel, FA. Bodewes, H. Moshage, A. Fantin, F. Farinati, and et al. Abnormal liver function tests in patients with covid-19: relevance and potential pathogenesis. Hepatology, 72(5): 1864–72, 2020, doi:10.1002/hep.31480.
[62] Y. Wang, S. Liu, H. Liu, W. Li, F. Lin, L. Jiang, and et al. Sars-cov-2 infection of the liver directly contributes to hepatic impairment in patients with covid19. Journal of hepatology, 2020;73(4): 807–16, 2020, doi:10.1016/j.jhep.2020.05.002.
[63] F. Zhou, T. Yu, R. Du, G. Fan, Y. Liu, Z. Liu, and et al. Clinical course and risk factors for mortality of adult inpatients with covid-19 in wuhan, china: a retrospective cohort study. The lancet, 395(10229): 1054–62, 2020, doi:10.1016/S0140-6736(20)30566-3.
[64] Z. Fan, L. Chen, J. Li, X. Cheng, J. Yang, C. Tian, and et al. Clinical features of covid-19-related liver functional abnormality. Clinical Gastroenterology and Hepatology, 18(7): 1561–6, 2020, doi:10.1016/j.cgh.2020.04.002.
[65] H-Y. Lei, Y-H. Ding, K. Nie, Y-M. Dong, JH. Xu, M-L. Yang, and et al. Potential effects of sars-cov-2 on the gastrointestinal tract and liver. Biomedicine Pharmacotherapy, 133: 111064, 2021, doi:10.1016/j.biopha.2020.111064.
[66] MN. Bangash, JM. Patel, D. Parekh, N. Murphy, RM. Brown, AM. Elsharkawy, and et al. Sars-cov2: Is the liver merely a bystander to severe disease? Journal of Hepatology, 73(4): 995–6, 2020, doi:10.1016/j.jhep.2020.05.035.