

Nzar Abdulqader Ali Payman Othman Rahem

73

Improving Spatial neighbor Index Performance Based on

Space-Filling Curves

Nzar Abdulqader Ali Payman Othman Rahem

 College of Administration - University Of Sulaimani

 nzar@mail.com

Received date: 2/10/2013 Accepted date: 27/2/2014

Abstract

Spatial data consists of objects in space made up of points, lines, regions and data of higher

dimensions. Access method is required to support efficient manipulation of the multi-dimensional spatial

objects in the secondary storage. The goal of the Space-Filling Curve (SFC) is to preserve spatial

proximity; they can handle Nearest Neighbor Queries (NNQ) which involves determining the point in a

dataset that is nearest to a given point. In this paper a new algorithm for finding the horizontal and

vertical neighbor for RBG curve is proposed. The four direction neighbors are directly founded from the

query block without depending on transformation method between Piano and RBG index. The result

shows that the new algorithm has better performance than the traditional RBG neighbor index finding by

reducing the time needed for transformation between RBG and Piano index.

Keywords: Spatial Database, Spatial Access Methods, Space Filling Curves, Nearest Neighbor Queries.

 تحسين فهرسة الأداء في قواعد البيانات المكانية بأستخدام منحنى ممئ الفضاء

 بيمان عثمان رحيم نزار عبدالقادر عمي
 جامعة السميمانيةكمية الادارة والاقتصاد ـ

 22/2/2014تاسٌخ قبىل انبحث: 2/4/2012تاسٌخ استلاو انبحث:

خلاصةال

المكانية تحتوي عمى عدد كبير من المكونات المكانية مثل النقاط، الخطوط و متعدد الأضلاع)المناطق(. ان طريقة الوصول الى البيانات
محفوظ. لذا تحتاج بيانات متعددة الأبعاد تعتبر اكثر تعقيدا مقارنة ببيانات تتكون من بعد واحد وذلك بسبب عدم امكانية ايجاد الموقع المكاني ال

لعممية تحويل من فضاء متعدد الابعاد الى فضاء ذو بعد واحد، بحيث تكون المكونات القريبة في الفضاء تحول الى نقاط متقاربة عمى الخط
لهدف يمر خلال كل نقطة في الفضاء مرة واحدة. وذلك لضمان ا (Space-Filling Curve)ان منحنى ممىء الفضاء لحفظ الموقع المكاني.

والتي تتضمن (Nearest Neighbor Queriesالا وهي الحفاظ عمى المكان التقريبي، لذا من الممكن معالجة استعلامات المجاور الاقرب)
و منحنى (Peano). بعض الامثمة عمى منحنيات ممىء الفضاء هي منحنى (Query Point)ايجاد النقطة الاقرب الى نقطة الاستعلام

(RBG). يب البيانات خطيا باستخدام منحنى عند ترت(Peano) يمكن مباشرة ايجاد الاتجاهات الأربعة للاستعلام اعتمادا عمى خاصية
خوارزمية ايجاد المجاور يكون اكثر تعقيدا. في هذا البحث، تم اشتقاق (RBG)الوحدة الثنائية. لكن عند ترتيب البيانات باستخدام منحنى

 مباشرة دون الحاجة الى التحويل بين المنحنيين. (RBG)الأربعة لأستعلام منحنى جديدة لأيجاد الأتجاهات
ٍ اٌ الاستُتاجات انتً تى انتىصم انٍه تبٍٍ باٌ انخىاسصيٍة انًقتشحة تؤدي انى تقهٍم صيٍ تُفٍز الاستعلاو ورنك بعذ انتخهص يٍ كهفة صي

 (Depth)لاحجاو بٍاَات يختهفة ولاعًاق (Index)ا تى يقاسَة الاداء انفهشسً . وختاي(Peano)ويُحُى (RBG)انتحىٌم بٍٍ يُحُى

 يختهفة

 .استعلايات انًجاوس الاقشب , يُحُى يهىء انفضاءقىاعذ انبٍاَات انًكاٍَة , طشٌقة انىصىل انًكاًَ , : انكهًات انذانة

mailto:nzar@mail.com

Nzar Abdulqader Ali Payman Othman Rahem

74

Introduction

The role of spatial database is continuously in incensement in many modern

applications during the last few years. Mapping, urban planning, transportation planning,

resources management, Geographic Information System (GIS), Computer Aided Design

(CAD) are some of these applications.

The key characteristic that makes a spatial database (SDB) a powerful tool is its ability to

manipulate spatial data, rather than simply to store and represent them. The most basic form of

such a manipulation is answering queries related to the spatial properties of data. Some typical

spatial queries are the following:

 “Point Query” seeks for the spatial objects that fall on a given point.

 “Range Query” seeks for the spatial objects that are contained within a given region.

 “Join Query” may take many forms. It involves two or more spatial data sets and discovers

pairs of spatial objects that satisfy a given predicate.

Finally, a very common spatial query is the “Nearest Neighbor Query” that seeks for the

spatial objects residing more closely to a given object. In its simplest form, it discovers K

Nearest Neighbors (K-NN) for a given object [1].

Database systems that support spatial data use spatial indexes, also known as Spatial Access

Methods (SAM), to speed up the response of the query time. Because of the large volume of

spatial objects, spatial access methods are usually used to organize and speed up the retrieval

of spatial objects. Several spatial as the access methods make use of a regular decomposition

of space in order to organize and store spatial data. A spatial indexing method organizes space

and the objects in it in some way so that the only parts of the space and a subset of the objects

need to be considered to answer a query. In order to find spatial objects efficiently based on

proximity, it is essential to have an index over spatial locations. The underlying data structure

must support efficient spatial operations, such as locating the neighbors of an object and

identifying objects in a defined query region [2].

Most indexes are based on the principle of divide and conquer. Indexing structures

following this approach are typically hierarchical. The approach is naturally suitable for a

database system where the memory space is limited, and hence the pruning of a search must be

performed such that the more detail to be examined, the smaller numbers of objects are being

examined. An advantage of hierarchical structures is that they are efficient in range searching.

Nzar Abdulqader Ali Payman Othman Rahem

75

Indexing in a Spatial Database is different from indexing in a conventional database in that

data in an SDB are multi-dimensional objects and are associated with spatial coordinates. The

search is based not on the attribute values but on the spatial properties of objects [3].

Space Filling Curves (SFCs) provides a natural mapping from a high-dimensional space to a

one-dimensional curve and the ordering of points on SFC has been used extensively as a

meaningful order of points. In SFC the main index structures is Peano index and the other

RBG and Hilbert index are constructed from the Peano index by transformation method

proposed by Chen and Chang [4]. The nearest neighbor queries on the other hand used to find

the nearest block to the query block depending on the same transformation method. In this

paper new neighbor index structure proposed for RBG curve to find the nearest neighbor index

(the four near block) from the query index block directly without depending on transformation

method and then improve the performance of the query by reducing the transformation time. A

program have been designed and developed to evaluate the performance improvement due to

using the proposed algorithm.

SPACE-FILLING CURVES

A space-filling curve is a continuous path which passes through every point in a space once

to form a one-one correspondence between the coordinates of the points and the one-

dimensional sequence numbers of the points on the curve. The space-filling curve provides a

way to order linearly the points of a grid. The goal is to preserve the distance, i.e., points which

are close in space and represent similar data should be stored close together in the linear order.

Some example of space-filling curves is the Peano curve, the RBG curve and the Hilbert curve.

In general, space-filling curves start with a basic path on a k-dimensional square grid of side

2. The path visits every point in the grid exactly once without crossing itself. It has two free

ends which may be joined with other paths. The basic curve is said to be of order 1. To drive a

curve of order i, each vertex of the basic curve is replaced by the curve of order i-1, which may

be appropriately rotated and/or reflected to fit the new curve.

A. Peano Curve

The Peano curve is one-dimensional sequence number (1D-number) of points obtained by

simply interleaving the bits of a binary representation of the X and Y coordinates of the point

in the two-dimensional space (2D-space). The basic Peano curve for a 2x2 grid, denoted as P1,

is shown in Figure 1-(a). To drive higher orders of the Peano curve, we replace each vertex of

the basic curve with the previous order curve. Figures 1- (b) and (c) show the Peano curves of

Nzar Abdulqader Ali Payman Othman Rahem

76

order 2 and 3, respectively. We can think of dividing the given region into quadrants and

drawing a curve such as Figure 1-(a). Then each quadrant is divided in turn into 4 sub-

quadrants, and the same basic curve repeated in each, in place of each node in the previous

step. One more recursive step, again dividing each node into 4 sub-quadrants joined by the

basic curve, gives rise to Figure 1-(c).

Figure 1: Peano curves of order: (a) 1; (b) 2; (c) 3

B. RBG Curve

 In RBG, numbers are coded into binary representations such that successive numbers

differ in exactly one bit position. Faloutsos [5] observed that difference in only one bit position

had a relationship with locality. He proposed that numbers produces by interleaving the

coordinates of points in 2D-space as in the peano curve technique to obtain the 1D-number.

The basic reflected RBG curve of a 2x2 grid, denoted as R1 is shown in Figure 2(a). The

procedure to drive higher orders of this curve is to reflect the previous order curve over x-axis

and then over the y-axis. Figure 2-(b) and (c) show the reflected binary curve of order 2 and 3,

respectively. As in the case of Peano curve, the RBG curve begins with the curve of figure 2-

(a) it divides each quadrant into 4 sub-quadrants and replicates. While replicating, it rotates the

two upper quadrants through 180
o
 as shown in Figure 2-(b). It divides into 4 sub-quadrants

once again, with replication and upper quadrant rotation to get Figure 2-(c).

Figure2: RBG curves of order: (a) 1; (b) 2; (c) 3

C. Hilbert Curve

The Hilbert curve is mapping in which the four nearest neighbors in 2D-space are usually

mapped to points not too far away in the linear traversal. It begins with Figure 3-(a). As in the

case of the previous curves, it replicates in four quadrants. When replicating, the lower left

quadrant is rotated clockwise 90
o
, and the sense (or direction of traversal) of both lower

Nzar Abdulqader Ali Payman Othman Rahem

77

quadrants is reversed. The two upper quadrants have no rotation and no change of sense. Thus

we obtain Figure 3-(b). Remembering that all rotation and sense computations are relative to

previously obtained rotation and sense in a particular quadrant, a repetition of this step gives

rise to Figure 3-(c). So the basic Hilbert curve of a 2x2 grid, denoted as H1 is shown in Figure

3-(a). The procedure to drive higher orders of this curve is to rotate and reflect the curve at

vertex 0 and at vertex 3. The curve can keep growing recursively by following the same

rotation and reflection pattern at each vertex of the basic curve. Figure 3-(b) and (c) show the

Hilbert curves of order 2 and 3, respectively.

Figure 3: Hilbert curves of order: (a) 1; (b) 2; (c) 3

The path of space-filling curve imposes a linear ordering, which may be calculated at one

end of the curve and following the path to the other end. Orenstein [6] used the term z-

ordering to refer to the ordering of the Peano curve (Figure 3-(a)) he also used the term z-value

to refer to the order of the point in the z-ordering. Similarly, in Figure 4-(b), r-ordering and r-

value are used for the RBG curve, and in Figure 4-(c), h-ordering and h-value are used for the

Hilbert curve.

Figher 4: Space Filling Curves of order 2: (a) Peano; (b) RBG, (c) Hilbert

PROPOSED ALGORITHM

 Nearest neighbor-finding is one of the most important spatial queries in the field of spatial

data structures which are concerned with proximity. Because the goal of the space-filling

curves is to preserve spatial proximity, nearest neighbor queries can be handled by the space-

filling curves.

 Chen and Chang [CC05], finds the strategy based on the Peano curve for the nearest

neighbor query. Next, they presented the rules for transformation between the Peano curve and

Nzar Abdulqader Ali Payman Othman Rahem

78

the other two curves, including the RBG curve and the Hilbert curve; also efficiently they fined

the nearest neighbor by the strategies based on these two curves. Finally, they have compared

the CPU_time and the I/O_time among different nearest neighbor strategies.

The proposed algorithm in this paper helps looking for the neighbor in horizontal and

vertical direction for RBG curve directly without depending on transformation method from

Peano curve and then decrease the execution time needed for transformation algorithm and as a

result improve the performance of finding nearest neighbor of RBG curve.

Given a query point with its located block at the nth level (di) and the binary location code

denoted as {xiyi }, i= 0, 1, ……., n. Let k > 0 be a positive integer and c be the numbers of ones

in binary value (R)2 Figure 5 shows the block diagram of the proposed algorithm .

Figure 5: Block diagram for finding horizontal and vertical direction for RBG curve

Example:

 Figure 6 represents RBG curve of order 3 as decimal values. We implement our algorithm

depending on the equations represented in the block diagram to find the horizontal and vertical

neighbor of block 323.

Nzar Abdulqader Ali Payman Othman Rahem

79

Figure 6: The sequence numbers linearly orderd by the RBG curves

1) North Neighbor.

To find the north neighbor in vertical direction of block (323)10, its binary form is (x0y0, x1y1,

x2y2)= (11,10,11)2, where c (number of 1s) =5 is odd and k=1 (y1 ≠ x1), by changing the digits

(y0, x1, y1, x2, y2) according to equations represented in the block diagram (Figure 5), the north

neighbor 10*,0*1*,0*0*)2 = (210)10 is obtained, the symbol * means the complement (change)

bit.

2) South Neighbor.

To find the south neighbor in vertical direction of block (323)10, its binary form is (x0y0, x1y1,

x2y2)= (11,10,11)2, where c (number of 1s) =5 is odd by changing the digit yn= y2 according to

equations represented in the block diagram (Figure 5), the south neighbor (11,10,10*)2 = (322)10

is obtained, the symbol * means the complement (change) bit.

3) East Neighbor.

To find the east neighbor in horizontal direction of block (323)10, its binary form is (x0y0,

x1y1, x2y2)= (11,10,11)2, where c (number of 1s) =5 is odd and yn=y2=1, by changing the

digits xn=x2 and yn=y2 according to equations represented in the block diagram (Figure 5), the

east neighbor (11,10,0*0*)2 = (320)10 is obtained, the symbol * means the complement

(change) bit.

4) West Neighbor.

To find the east neighbor in horizontal direction of block (323)10, its binary form is (x0y0,

x1y1, x2y2)= (11,10,11)2, where c (number of 1s) =5 is odd, yn=y2=1 and k=2 (y1 ≠ x2), by

changing the digits (x1, y1, x2, y2) according to equations represented in the block diagram

133 130 103 100 233 230 203 200

132 131 102 101 232 231 202 201

121 122 111 112 221 222 211 212

120 123 110 113 220 223 210 213

013 010 023 020 313 310 323 320

012 011 022 021 312 311 322 321

001 002 031 032 301 302 331 332

000 003 030 033 300 303 330 333

Nzar Abdulqader Ali Payman Othman Rahem

80

(Figure 5), the east neighbor (11,0
*
1

*
,0

*
0

*
)2 = (310)10 is obtained, the symbol * means the

complement (change) bit.

PEFORMANCE MEASURMENT

The performance of the nearest neighbor-finding structure is compared based on three

Space Filling Curves with new algorithm (NRBG) curve. The programs were created using

visual basic language as the front end and SQL Server database as a backend database, the

system depends on one of the important SQL function, which is CPU_BUSY time to calculate

the system performance. The CPU_BUSY time returns the time that the CPU has spent

working in milliseconds since Microsoft SQL Server was last started.

Figure 7 shows the grid decomposition produced by the program to find all spatial objects

that are far away 50 km from the query point, where 50000 points of spatial objects are

generated randomly and distributed over the sulaimani governorate map.

Figure 8 shows the cost of CPU_BUSY time for four distance length (25Km, 50Km, 75Km,

and 100 Km) and for different depths to 50000 spatial objects. The results shows that the CPU

time request for finding nearest neighbor depending on NRBG curve is less than RBG curve

after finding the horizontal and vertical direction directly from query block without depending

on transformation method and as a result the NRBG performance increased in comparison with

RBG .

Figure 9 shows the cost of CPU_BUSY time for four distance length (25Km, 50Km, 75Km,

and 100 Km) and for different depths to 150000 spatial objects. The results shows that the

CPU time request for finding nearest neighbor depending on NRBG curve is still less than

RBG which is means the algorithm give the same performance after increasing the size of

spatial objects from 50000 to 150000.

 From the Figure 10, by increasing the size of spatial objects to 250000, the NRBG curve

have the same previous stability in comparison with RBG, and this represents the efficiency of

the new algorithm for finding the neighbor points depending on the index of the neighbor node

directly.

Nzar Abdulqader Ali Payman Othman Rahem

81

Figure 7: Query result for nearest neighbor for distance=50 km, depth=4

Nzar Abdulqader Ali Payman Othman Rahem

82

50000 / Depth=2

0

5

10

15

20

25

30

35

40

45

0 25 50 75 100 125

Distance (Km)

I/
O

_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

(a) Depth=2

50000 / Depth=3

0

20

40

60

80

100

120

0 25 50 75 100 125

Distance (Km)

I/
O

_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

(b) Depth=3

 50000 / Depth=4

0

1000

2000

3000

4000

5000

6000

7000

0 25 50 75 100 125

Distance (Km)

C
P

U
_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

(c) Depth=4

Figure 8: CPU_Busy Time for 50000 objects Figure 9: CPU_Busy Time for 150000

object for different depths objects for different depths

150000 / Depth=2

0

100

200

300

400

500

600

700

0 25 50 75 100 125

Distance (Km)

C
P

U
_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

(a) Depth=2

150000 / Depth=3

0

500

1000

1500

2000

2500

3000

0 25 50 75 100 125

Distance (km)

C
P

U
_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

(b) Depth =3

150000 / Depth=4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 25 50 75 100 125

Distance (km)

C
P

U
_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

(c) Depth=4

Nzar Abdulqader Ali Payman Othman Rahem

83

250000 / Depth=2

0

100

200

300

400

500

600

700

800

900

1000

0 25 50 75 100 125

Distance (Km)

C
P

U
_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

250000 / Depth=3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 25 50 75 100 125

Distance (Km)

C
P

U
_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

250000 / Depth=4

0

2000

4000

6000

8000

10000

12000

14000

0 25 50 75 100 125

Distance (Km)

C
P

U
_
B

U
S

Y
 t

im
e

Peano

RBG

Hilbert

NRBG

(a) Depth =2

(b) Depth =3

(c) Depth =4

Figure 10: Comparison of CPU_Busy Time for 250000 objects for different depths

Nzar Abdulqader Ali Payman Othman Rahem

84

CONCLUSIONS

In this paper a comparison between three different space-filling curves is studied and a new

algorithm (NRBG) for improving nearest neighbor query for RBG curve is proposed. The

performance of the algorithm was calculated in terms of number of nodes visited to reach the

nodes located within specified distance. It is observed that the proposed algorithm (NRBG)

for finding NNQ gives better results than RBG and Hilbert curve and it is very close to Piano

curve by excluding the transformation time. The results shows that the performance of NRBG

curves remain stable after increasing the size of spatial objects from 50000 to 250000. The

experimental results show that the system remains efficient for different depth size.

REFERENCES

[1] A. Corral, Y. Manolopoulos, Y. Theodoridis and M. Vassilakopoulos, “Closest pair

queries in spatial databases” In Proceeding ACM SIGMOD Conference,2000,pp.189-

200.

[2] W. G. Aref, H. Samet, “A Window Retrieval Algorihm for Spatial database using

Quadtree“, ACM-GIS, 1995, pp.69–76.

[3] B. Ooi, R.Davis and J. Han, “Indexing in Spatial Databases”, 1993, Unpublished

Manuscript available at: http://www.iscs.nus.edu.sg/˜ooibc.

[4] H. Chen, Y. Chang, “ Neighbor-Finding Based on Space-Filling Curves”, Information

Systems, Vol 30, pp. 205-226, May 2005.

[5] C. Faloutsos, “ Multiattribute hashing using Gray Code”, In Proceeding ACM

SIGMOD Conference,1986,pp.227-238.

[6] J.Orenstein, F. Manola, “ PROBE Spatial Data Modeling and Query Processing in an

Image Database Application”, IEEE Trans. On Software Engineering ,pp.611-629,1988

