

Synthesis of [2-(Benzylidene amino)Ethanesulfonic Acid] and It's Coordination with Co (II) ,Ni (II),Cu (II) , Zn (II)and Hg (II)

Shakir M. Saied* Ahmad S. Mahal** Janan I. Shaheen*

*Institute of Technical - Mosul

**College of science- University of Mosul

E.mail:shakirmsaied@yahoo.com

Received date: 27/10/2010

Accepted date: 8/3/2011

Abstract

Condensation of 2-aminoethane sulfonic acid(Taurine) and benzaldehyde in sodium hydroxide ethanolic solution gave the Schiff base [2-(benzylidene amino) ethanesulfonic acid(L)] . This base particularly bind to metal ions Co (II) ,Ni (II),Cu (II) , Zn (II)and Hg (II) in 2:1 molar ratio via the N atom lone pair and oxygen atom of sulfonic acid (the most active positions) as a neutral bidentate ligand to form complexes of general formula $[ML_2 \cdot 2H_2O]Cl_2$. Characterization of these complexes were octahedral geometry as information obtained from IR and UV spectra and molar conductivity measurements.

Keyword

2-aminoethane sulfonic acid(Taurine) ; Schiff base; metal ions Co (II) ,Ni (II),Cu (II) , Zn (II)and Hg (II) complexes .

تحضير [2-(بنزيلدين أمين) إيثان حامض السلفونيك] وتناسقه مع الكوبالت والنikel والنحاس

شاكر محمود سعيد* جنان ادريس شاهين*

*المعهد التقني . موصل

**كلية العلوم . جامعة الموصل

تاريخ استلام البحث: 2010/10/27 تاريخ قبول البحث: 2011/3/8

الخلاصة

تکاثف 2- إیثان أمین حامض السلفونيك (التايرورين) و البنزالدیهاید فی محلول هیدروکسید الصودیوم الإیثانولی أعطی قاعدة الشیف 2- (بنزيلدين أمين) إیثان حامض السلفونيك (L)، ومن ثم تناسق هذه القاعدة مع الكوبالت والنیکل والنحاس والزنک والزئیک و بنسیب مولاریة 2:1 عن طریق ذرہ نتروجين الایمین و ذرہ اوكسجين حامض السلفونیل(الموقعن الأکثر فعالیة) کلیاندات ثانیة السن لإعطاء المعقدات ذات الصیفیة $[ML_2 \cdot 2H_2O]Cl_2$ تكون فیها هذه الفلزات سداسیة التنساق كما یشير لذلك تحلیل محالیل هذه المعقدات من حیث دراسة اطیافها فی الأشعة تحت الحمراء وفوق البنفسجیة ،إضافة إلى التوصیلیة الكهربیانیة المولاریة .

الكلمات الدالة

[2-(بنزيلدين أمين) إیثان حامض السلفونيك]، قواعد شیف، معقدات ایونات الفلز (II) .Co (II Ni (II),Cu (II) , Zn (II)and Hg (II)

Introduction

The biological activity attached to the Taurine nucleus [1-9] provided a great deal of interest in the nucleophilic addition of its terminal amino group to the carbonyl carbon of aromatic aldehydes forming Schiff bases of biological interest such as bacteriostatic, herbicidal and antifungal activity[10]. Duo to its flexibility and selectivity as well as sensitivity towards the central metal atom it was of interest to coordinate this base with different metal salts to get biologically active complexes[11-12].

Thus, and as a part of a continuous program directed toward the synthesis of important biological active compounds[13-15], it became of interested to investigate preparative routes to synthesis of Schiff base L(Scheme1)derived from the reaction of benzaldehyde and Taurine and to study it's complexation with metals Hg (II), Cu (II), Ni (II), Co (II) and Zn (II)

Experimental

All melting points were determined on a Gallen Kamp and Electrothermal 1A9300 Digital-Series (1998) apparatus and were uncorrected. IR Spectra were recorded on Unicam SP 2000 Spectrometer at a range (200-4000 cm⁻¹) using KBr discs. Electronic spectra were recorded on a Shimadzu UV/Vis Spectrophotometer UV- 160 for 10⁻³M solution of the complexes in ethanol at ambient temperature (25 °C) .

Synthesis of Schiff base[2-(benzylidene amino) ethanesulfonic acid](L)[16] :

2-Ethaneaminosulfonic acid (Taurine) and benzaldehyde (1 : 1 molar ratio)were dissolved in Sodium hydroxide ethanolic solution. The resulting reaction mixture was refluxed for two hours. The solid precipitate was poured into water and acidified to neutral, filtered, washed with distilled water dried, recrystallised from ethanol to give a yellow crystals of (L).Physical properties and spectra data were listed in Table (1) and (2) respectively.

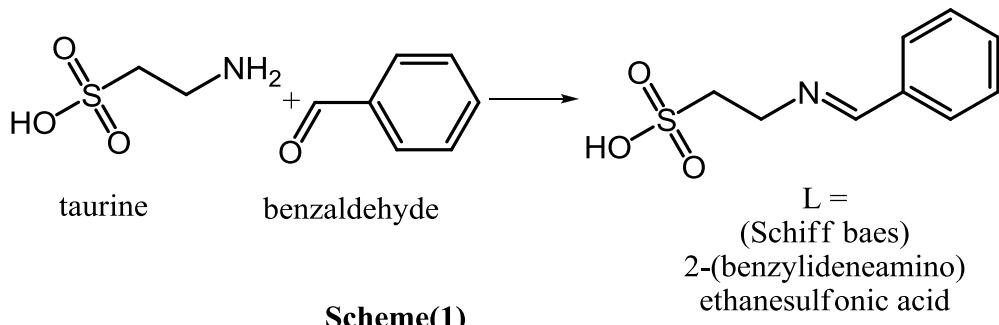
Synthesis of complexes(1-5)[17]:

Sodium hydroxide ethanolic solution of Schiff base [2-(benzylidene amino) ethanesulfonic acid](L) (2.13g,10 mM) was mixed with metal (II) chloride (5 mM) in absolute ethanol (10 ml) solution keeping ligand-metal ratio 2 : 1.

The mixture was then refluxed for two hours on a water bath till the complex precipitated out. The solid product was filtered, washed with distilled water and dried in vacuo. Physical properties and spectra data and molar conductivities of dissolvable complexes were listed in Tables (1) and (2) respectively.

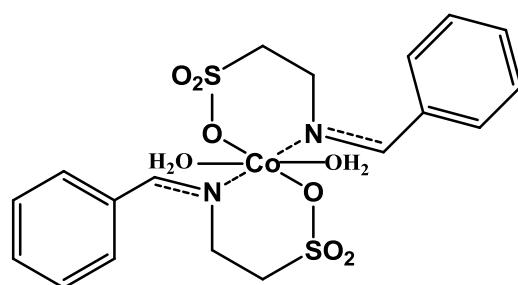
Table (1):Physical properties, molar conductivities of dissolvable and spectra data of the complexes (1-5)

Complex No	Structure Color	M.P. °C	UV/Vis λ _{max} nm	Molar Conductivity Cm ² ohm ⁻¹ Mol ⁻¹
Ligand(L)	C ₆ H ₅ - CH =N(CH ₂) ₂ SO ₂ OH Yellow	294	245 292	-----
1	[Cu(L) ₂ H ₂ O] Cl ₂ Green	218	312	140
2	[Co(L) ₂ H ₂ O] Cl ₂ Brown	290	320 370 390	130
3	[Ni(L) ₂ H ₂ O] Cl ₂ Greenish Blue	285	301 350 392	170
4	[Zn(L) ₂ H ₂ O] Cl ₂ White	165-170	Insoluble	Insoluble
5	[Hg(L) ₂ H ₂ O] Cl ₂ White	288 dec.	Insoluble	Insoluble


Table (2): IR spectra of ligand and complexes(1-5)

Selected IR bands (cm ⁻¹)						
Complexe no	M-O	M-N	M-OH ₂	Pr	Pw	(C=N)
L	---	-----	-----	-----	---	1640s
1	520	450	440	880	530	1602s
2	560	400	430	870	580	1618m
3	550	420	410	740	630	1622 w
4	540	530	430	820	560	1634br
5	560	570	450	850	540	1633w

br : broad, vs : very strong, s : sharp, m : medium, w : weak


Results and Discussion

The information obtained from IR and UV spectra and molar conductivity measurements along with some physical properties of the complexes were summarized in table 1 and (2) respectively. The ligand L was synthesized by Scheme (1).

Scheme(1)

This ligand on interaction with Co (II), Ni (II), Cu (II), Zn (II) and Hg (II), in 2:1 molar ratio, yields complexes corresponding to the general formula $[ML_2 \cdot 2H_2O]Cl_2$ Scheme(2).

Scheme (2)

The high molar conductance values of the complexes revealed their electrolytic nature. Characterization of these complexes were octahedral geometry.

IR Spectrum Table(2) of the free ligand was compared with the spectra of the metal complexes. In the spectrum of the free ligand, the sharp band at 1640 cm^{-1} can be assigned to the $\text{vC}=\text{N}$ vibration. In the complexes, this band was found at the lower values. The lowering of the $\text{vC}=\text{N}$ frequency in the complexes, indicates the coordination of the azomethine nitrogen atom at the metallic ion[18-19].

In addition, all IR spectra belonging to the Co (II) ,Ni (II),Cu (II) , Zn (II)and Hg (II) complexes confirming the existence of water molecules in the structure of the crystalline lattice [20].

Table (2) ,the UV spectra of Schiff base in ethanolic solution was 245nm and 290 nm due to the electronic transition $\pi\rightarrow\pi^*$ in phenyl ring, $\pi\rightarrow\pi^*$ and $\text{n}\rightarrow\pi^*$ transitions in C = N group, respectively. On complexation, a blue shift(301-392 nm) was observed due to the polarization in the C = N caused by the metal-ligand electronic interaction during the chelation [20] .

Conclusions

The coordination chemistry of a Schiff base ligand, obtained from the condensation of 2-aminoethane sulfonic acid(Taurine) and benzaldehyde in sodium hydroxide ethanolic solution, was described. Co (II) ,Ni (II),Cu (II) , Zn (II)and Hg (II)complexes have been synthesized using the above Schiff base ligand and characterized on the basis of molar conductivity and spectral data.

The Schiff base coordinates through N atom lone pair and oxygen atom of sulfonic acid (the most active positions) to the metal ion and acts as a neutral bidentate ligand to form complexes of general formula $[\text{ML}_2 \cdot 2\text{H}_2\text{O}]\text{Cl}_2$ in 2:1 molar ratio. All the complexes exhibit octahedral geometry.

References

- 1-S.J.Weiss, R.Klein, A.Slivka and A.Wei"[Chlorination of Taurine by Human Neutrophils](#)". Journal of Clinical Investigation 70 (3)(1982)pp: 598–607.
- 2- F. A. Carey, Organic Chemistry, 6th ed., New York: McGraw Hill(2006)., 1149.
- 3- P. Lahdesmaki, "Biosynthesis of taurine peptides in brain cytoplasmic fraction in vitro.". Int J Neuroscience 37 (1-2) (1987).pp: 79–84.
- 4-K.Kirk and J. Kirk , "Volume-regulatory taurine release from a human lung cancer cell line". FEBS Letters 336 (1)(1993): pp153–158.
- 5-R.Pop-Busui ,K.A. Sullivan ,C.Van Huysen , L. Bayer ,T.R. Cao and Stevens M.J "[Depletion of taurine in experimental diabetic neuropathy: implications for nerve metabolic, vascular, and functional deficits](#).". Exp Neurol. 168 (2) .(2001).PP:90-98.
- 6-j.d.Militante andJ.B. Lombardini"[Treatment of hypertension with oral taurine: experimental and clinical studies](#)". Amino Acids 23 (4)(2002): 381–393.
- 7- T.C.Birdsall, "[Therapeutic Applications of Taurine](#)" Retrieved on 2006-08-22. [Currently taurine is being tested as an anti-manic treatment for bipolar depression. Tsuboyama-Kasaoka, Nobuyo; Chikako Shozawa, Kayo Sano, Yasutomi Kamei, Seiichi Kasaoka, Yu Hosokawa and Osamu Ezaki (2006).
- 8-J.Brosnan,M. Brosnan "The sulfur-containing amino acids: an overview.". J Nutr 136 (6 Suppl)(2006)pp: 1636S-1640S.

9- Li F, Abatan OI, Kim H, Burnett D, Larkin D, Obrosova IG, Stevens MJ. "[Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats.](#)". *Neurobiology of Disease* **22** (3),pp(2006).

10- N.Raman, S.Ravichandran and A. Kulandaismy " Copper(II), cobalt(II), nickel(II) and zinc(II) complexes of Schiff base derived from benzil-2,4-dinitrophenylhydrazone with aniline " *Asian J. Chem.*; **14** (2002), 1261p.

11-E.Bottari, and M.R. Festa" Taurine as a ligand, an investigation of Ag (I) and Cd(II) taurine complex equilibrium by direct and competitive techniques, and use of its electrode to assess Taurine solution" ;*Talanta*, **46**;(1998): 91p.

12- Cezar ,S. and Kriza A.(2000); " Co(II), Ni(II) and Cu(II) COMPLEXES OF BIDENTATE SCHIFF BASES;*Acta Chim. Slov.* , **47**, 179-185.

13- J.I.M.Shaheen," Synthesis and Characterization of New Complexes of Anticipated Analgesic Activity Formed by Transition Metals Co (II), Ni (II) and Cu (II) with 4-Aminoantipyrine [4-AAP]";under publication(2008).

14- J.I.M.Shaheen, "Preparation and characterization of some Selenium (IV) and Idium (III) complexes with 2- aminoethyldithiocarbamate ""MSc thesis; Dept. of Chemistry, College of science, University of Mosul.(2005).

15- A.M.Mahal" Synthesis and Characterizations of some Derivatives of Aroylhydrazone Metal Complexes "MSc thesis;AL Al-Bayt University ;Dept. of Chemistry, College of Art & science'Jorden.(2006).

16- N. Raman;A. Ravichndran and C.Thangarja,"Copper(II), cobalt(II), nickel(II) and zinc(II) complexes of Schiff base derived from benzil-2,4-dinitrophenylhydrazone with aniline" *J. Chem. Sci.*, **116**, No. 4, J(2004) pp. 215–219.

17- G. C., Percy and D.A.Thornton ; *J. Inorg.Nucl. Chem.*, **34**, (1972):3357

18- J. W., Lewis and C. Sandorfy , *Can. J. Chem.*, **60**,(81982).

19-K.Nakamoto" Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., John Wiley, New York,(1978)pp 231 .

20-S.H., Hussein, B.A.Ahmed and M.A. AL-Shama'a, *j.Edu.Sci.* ;**50**,(2011)13