

Contra- Semi -Pre-Continuous Functions

Amal A .Flamerze

Dept .of Mathematics / College of Science / Kirkuk University
Email : amalabas37@yahoo.com

Received date: 18/9/2011

Accepted date: 5/5/2013

Abstract

In this paper, we introduce and investigate contra-semi-pre-continuous functions. This new class is a super class of the class of contra- α -continuous functions and contra-pre-continuous functions.

Key word : Contra- Semi -Pre-Continuous Functions.

الدوال المستمرة العكسية من نمط شبه قبلي

امل عباس فلامرز

قسم علوم الرياضيات، كلية العلوم – جامعة Kirkuk

تاريخ قبول النشر ٢٠١٣/٥/٥

٢٠١١/٩/١٨ تاريخ تقديم البحث

الخلاصة

في هذا البحث تم تقديم والتطرق للدوال المستمرة العكسية من نمط شبه قبلي وهذه الفئة الجديدة هي فئة عظمى من فئة الـ α المستمرة العكسية نوع - α والدوال المستمرة العكسية قبليا.

Contra- Semi -Pre-Continuous Functions: الكلمات الدالة

1. Introduction

Dontchev [1] introduced the notion of contra-continuity and obtained some results concerning compactness, S-closedness and strong S-closedness in 1996. Dontchev and Noiri [2] introduced and investigated contra-semi-continuous functions and RC-continuous functions between topological spaces in 1999. Jafari and Noiri [3] introduced contra-pre-continuous functions and obtained their basic properties. Jafari and Noiri [4] also introduced contra- α -continuous functions between topological spaces. Recently Veera Kumar [5] introduced the class of contra- ψ -continuous functions. Recently Veera Kumar [6] introduced pre-semi-closed sets for topological spaces. In this paper, we introduce and investigate contra-semi-pre-continuous functions. This

new class is a superclass of the class of contra- α -continuous functions and contra-pre-continuous functions.

2.Preliminaries

Throughout this paper, (X, τ) and (Y, σ) will denote topological spaces. For a subset A of a space (X, τ) , $cl(A)$ (resp. $int(A)$ and $C(A)$) will denote the closure (resp. the interior and the complement) of A in (X, τ) .

Definition 2.1. A subset A of a topological space (X, τ) is called

- (1) semi-open if $A \subseteq cl(int(A))$ [7]
- (2) pre-open if $A \subseteq int(cl(A))$ [8]
- (3) α -open if $A \subseteq (int(cl(int(A))))$ [9]
- (4) β -open [10] or semi-pre-open [11] if $A \subseteq cl(int(cl(A)))$
- (5) regular open if $A = int(cl(A))$ [7]
- (6) regular closed if $A = cl(int(A))$ [7]

The complement of a pre open (resp. semi-open, α -open, β -open) set is called a pre closed (resp. semi-closed, α -closed, β -closed) set.

Definition 2.2. A subset A of a space (X, τ) is called a generalized closed (briefly g-closed) set [12] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . The complement of a g-closed set is called a g-open set.

Definition 2.3. A subset A of a space (X, τ) is called a semi-pre-closed set [6] if $PSCL(A) \subseteq U$ whenever $A \subseteq U$ and U is a g-open set of (X, τ) , where $pscl(A)$ is the pre-semi-closure of A . The complement of a semi-pre-closed set A is called a semi-pre-open set.

Definition 2.4. A subset A of a space (X, τ) is called a semi-generalized closed (briefly sg-closed) set [11] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ) , where $scl(A)$ is the semi-closure of A . The complement of a sg-closed set is called a sg-open set.

Definition 2.5. A subset A of a space (X, τ) is called a ψ -closed set [13] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is a sg -open set of (X, τ) . The complement of a ψ -closed set A is called a ψ -open set.

Definition 2.6. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called:

(1) perfectly continuous [14] or strongly continuous [10] if $f^{-1}(V)$ is clopen in (X, τ) for every open set V of (Y, σ)

(2) RC-continuous [2] if $f^{-1}(V)$ is regular closed in (X, τ) for every open set V of (Y, σ)

(3) contra-continuous [1] if $f^{-1}(V)$ is closed in (X, τ) for every open set V of (Y, σ)

(4) contra-pre-continuous [3] if $f^{-1}(V)$ is pre-closed in (X, τ) for every open set V of (Y, σ)

(5) contra-semi-continuous [2] if $f^{-1}(V)$ is semi-closed in (X, τ) for every open set V of (Y, σ)

(6) contra- α -continuous [4] if $f^{-1}(V)$ is α -closed in (X, τ) for every open set V of (Y, σ)

(7) contra- ψ -continuous [5] if $f^{-1}(V)$ is ψ -closed in (X, τ) for every open set V of (Y, σ)

Definition 2.7. A topological space (X, τ) is called:

(1) a semi-pre- $T_{\frac{1}{2}}$ space [6] if every semi-pre-closed set in it is pre-semi-closed

(2) a semi-pre- T_b space [6] if every semi-pre-closed set in it is pre-closed

(3) a semi-pre- $T_{\frac{3}{4}}$ space [15] if every semi-pre-closed set in it is semi-closed.

3. Contra- semi - pre -continuous functions

Definition 3.1. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called contra-semi-pre-continuous if $f^{-1}(V)$ is semi-pre-closed in (X, τ) for each open set V of (Y, σ) .

Theorem 3.1. Every contra- α -continuous function is contra-semi-pre-continuous.

Proof. It follows from the fact that every pre-semi-closed set is semi-pre-closed ([15, Theorem 3.02]).

Example 3.1. A contra-semi-pre-continuous function need not be contra- α -continuous. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{a, c\}\}$ and $\sigma = \{\emptyset, Y, \{a\}\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = a, f(b) = a$ and $f(c) = b$. Then f is contra-semi-pre-continuous but not contra- α -continuous.

Thus the class of contra-semi-pre-continuous functions properly contains the class of contra- α -continuous functions.

Theorem 3.2. Every contra-semi-continuous function is contra-semi-pre-continuous.

Proof. It follows from the fact that every semi-closed set is semi-pre-closed ([15, Theorem 3.04]).

Example 3.2. A contra-semi-pre-continuous function need not be contra-semi-continuous. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\emptyset, Y, \{a\}\}$.

Define $g : (X, \tau) \rightarrow (Y, \sigma)$ by $g(a) = a, g(b) = b$ and $g(c) = c$. Then g is contra-semi-pre-continuous but not contra-semi-continuous.

Thus the class of contra-semi-pre-continuous functions properly contains the class of contra-semi-continuous functions.

Definition 3.2. A space (X, τ) is called semi-pre-locally indiscrete if every semi-pre-open set in it is closed.

Example 3.3. Let $X = \{a, b\}$ and $\tau = \{\emptyset, X, \{a\}, \{b\}\}$. Then (X, τ) is a semi-pre-locally indiscrete space. The space (X, τ) in Example 3.2 is not a semi-pre-locally indiscrete space since $\{a\}$ is a semi-pre-open set but it is not closed.

Theorem 3.3. If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is semi-pre-continuous and (X, τ) is semi-pre-locally indiscrete, then f is contra-continuous.

Proof. Let V be an open set of (Y, σ) . Then $f^{-1}(V)$ is semi-pre-open in (X, τ) since f is semi-pre-continuous. Since (X, τ) is semi-pre-locally indiscrete, $f^{-1}(V)$ is closed. Therefore f is contra-continuous.

Theorem 3.4. If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-semi-pre-continuous and (X, τ) is a semi-pre- $T_{1/2}$ space, then f is contra- α -continuous.

Proof. Let V be an open set of (Y, σ) . Then $f^{-1}(V)$ is semi-pre-closed in (X, τ) since f is contra-pre-semi-continuous. Since (X, τ) is semi-pre- $T_{1/2}$, $f^{-1}(V)$ is pre-semi-closed. Therefore f is contra- α -continuous.

Theorem 3.5. If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-semi-pre-continuous and (X, τ) is a semi-pre- T_b space, then f is contra-pre-continuous.

Proof. Let V be an open set of (Y, σ) . Then $f^{-1}(V)$ is semi-pre-closed in (X, τ) since f is contra-semi-pre-continuous. Since (X, τ) is pre-semi- T_b , $f^{-1}(V)$ is pre-closed. Therefore f is contra-pre-continuous.

Theorem 3.6. If a function $f : (X, \tau) \rightarrow (Y, \sigma)$ is contra-semi-pre-continuous and (X, τ) is a semi-pre- $T_{3/4}$ space, then f is contra-semi-continuous.

Proof. Let V be an open set of (Y, σ) . Then $f^{-1}(V)$ is semi-pre-closed in (X, τ) since f is contra-semi-continuous. Since (X, τ) is semi-pre- $T_{\frac{3}{4}}$, $f^{-1}(V)$ is semi closed. Therefore f is contra-pre-continuous.

References

- [1] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, *Internat. J. Math. Math. Sci.* 19(2) (1996), pp.(303–310).
- [2] J. Dontchev and T. Noiri, Contra-semicontinuous functions, *Math. Pannon.* 10(2) (1999), pp.(159–168).
- [3] S. Jafari and T. Noiri, On contra-precontinuous functions, *Bull. Malays. Math. Sci. Soc.* (2) 25(2) (2002), pp.(115–128).
- [4] S. Jafari and T. Noiri, Contra- α -continuous functions between topological spaces, *Iran. Int. J. Sci.* 2(2) (2001), pp.(153–167).
- [5] M. K. R. S. Veera Kumar, Contra- ψ -continuous functions, preprint. *Univ. Trieste* 32(1–2) (2000), pp. (25–41).
- [6] M. K. R. S. Veera Kumar, Semi-pre-closed sets, *Indian J. Math.* 44(2) (2002), pp.(165–181).
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly* 70(1963), pp.(36–41).
- [8] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak pre-continuous mappings, *Proc. Math. Phys. Soc. Egypt* No. 53 (1982), pp. (47–53).
- [9] O. Njastad, On some classes of nearly open sets, *Pacific J. Math.* 15 (1965), pp.(961–970).
- [10] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β -open sets and β -continuous mapping, *Bull. Fac. Sci. Assiut Univ. A* 12(1) (1983), pp.(77–90).
- [11] P. Bhattacharyya and B. K. Lahiri, Semigeneralized closed sets in topology, *Indian J. Math.* 29(3) (1987), pp.(375–382).
- [12] N. Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palermo* (2) 19 (1970), pp.(89–96).

- [13] M. K. R. S. Veera Kumar, Between semi-closed sets and semi-pre-closed sets, *Rend. Istit. Mat. Univ. Trieste* 32(1–2) (2000), pp.(25–41).
- [14] T. Noiri, Supercontinuity and some strong forms of continuity, *Indian J. Pure Appl. Math.* 15(3) (1984), pp.(241–250).
- [15] M. Caldas and S. Jafari, Some properties of contra- β -continuous functions, *Mem. Fac. Sci. Kochi Univ. Ser. A Math.* 22 (2001), pp.(19–28).
- [16] N. Levine, Strongly continuity in topological spaces, *Amer. Math. Monthly* 67 (1960), 269p.