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Abstract

In this paper a new method for solving the integral equation in space-time which arises
in mathematical physics, mechanics and the heat conduction theory is presented. The central
idea is: First, differentiating both sides of two-dimensions Fredholm integral Equations n-
times with respect to both variables x and t, second, substituting the Taylor series of two
variables for the unknown function, and third, obtain a system of linear equations which can
be solved by a suitable truncation scheme .Lastly,the double-quadrature rules are used to
calculate the required integrals in this procedure. The presented algorithm is illustrated by
some numerical examples with comparison tables.

Introduction
Consider the following linear two-dimensional Fredholm integral
equations of second kind:

f(x1)= g(x,t)+j'j'k(x,t, y,s) f(y,s)dyds (D)

For (x,t)e D:=[a,b]x[c,d], where k:DxD-—>R and g:D—>R are
assumed to be bounded and usually to be continuous, the two-variable function
f is the unknown function, while a,b,c and d are real constants(Vasile,2001).
This equation has a unique solution in the space L?(D) , (Lechoslow,2002).The
considered integral equations in space-time play a very important role in
mechanics and technology, with special attention paid to large sense of power
engineering. Some initial-boundary problems for a number of differential partial
equations in physics can be reduced to consider integral equation,
(Lechoslow,2002).Numerical results for equation (1) have been treated by many
authors and different methods are used, by:Valise Carutasu (spline functions),
Lechoslaw Hacia (Galerkin method) and Brunner (collocation method),
(Vasile,2001,Lechoslow,2002,Brunner&Kurtis,1989).Fewer  numerical and
expansion methods are known for the several-dimensional Fredholm integral
equations.In this paper we will deal with the Taylor expansion method for the
two-dimensional linear Fredholm integral equations of second kind.
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Taylor series (John&Kurtis,2004,Richard&Douglas,1997)

Suppose f(x,y) and its partial derivation through order (m+1) are
continuous throughout a rectangular region centered at a point (x,,y,) -
Then throughout the region,

0 0 1, 0 0\,
f(x,y):f(xo,yo)+(h&+k5)f(xo,yo)+5(h&+k5) f(Xg,Yo) +--. ... (2)

1,0 0 \m
+H(h&+k5) f (X0, Yo)+R,

Where R, , the remainder after m-terms, is given by:
0 m+1
R, = (m+ 1)|( & ay) f(x, +0hy, +6k) ,0<6<1

where h=Ax=x-x, , k=Ay=y-y, and the operator notation is,

o 0
(h&+k@)2 f (X0, Yo) = h? £, (X, Yo) + 2hKE,, (X, Yo) + k£, (%o, ¥o)

And if we expanded m-th term formally by the binomial theorem, we get

a a m S m-iy, i a amI.I:(XOYyO)

h k)" F (X, Yo) = | . ™K (o2l
(8x+ 5) (Xo: Yo) i_O(J > — ( o= )

Finally we substitute this result in the equation (2) and we obtain the

following equation

f(x,y) = %;m,M(x %)™ (Y= o) %(W) e

The method

In order to solve equ.(1) we take the partial derivatives n-times with
respective to x and t respectively, and get :

o"f(x,t) a"g(x,t) Fra"k(xt,Y,s)
= f(y,s)dyds
étraxn—r atraxn r J'J. a n-r (y ) y
Replace (x,t) by (x,,t,) < D inthe last equation, we have
0" f(Xo.1,) :8”9(Xo,to)+ﬁ@”k(xo,to,y,8)
ot ox"" ot'ox"" ot ox""
Then expand f(y,s) in Taylor series of two-variables at (x,,t,) as in equ.(3)
and substituting it in equ.(4) to obtain :
0" f (X, t) =8”9(><o,to)+
ot"ox™" ot'ox™"

L1 0"K(X . Y,8) e 1 (m o o " E (%t
I lggﬁ[ j(y )6 L (s

,foreachr=01...,n

f(y,s)dyds ...(4
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And we rewrite it, since by substituting the derivative part of f and g at the
point (x,,t,) SO we replace x and t in the derivative function f and g by y and s

respectively which are the same and we get:

0" f (X,,1t,) _ 0"g(%,,t,) +izm:a_ o 'f(xo,t ))T | 5
asrayn—r asrayn—r el asl ay nrmi ( )

Where

1 $50"k(x,,t,,Y,S o i
T, = T !.!: a(t’oax%"y )( —X,)""(s—t,)' dyds ,for each r=01,...,n

Finally, we will attempt to solve the infinite relations from equ.(5) to
determining the Taylor coefficients by a suitable technique which depends on
truncating the series in such way that we get a determinate system at every step.
Equation (5) can be expressed in matrix from as:

G =HF ... (6)
Where H and G are constant matrices with dimensions pxp and px1

respectively, and F is a matrix of Taylor’s coefficients with dimension px1,

such that: p= wz(m”) m=0.12... ; Where

F=[f,(x,t,)]" and G=-[g,(x,t,)]" foreach q=12,..,p
On the other hand, q =ij (as a component) where
j=041..m and i=01, . j with

o't IR
D) and g, = gi,-—a.(ayj,)

fy =y = (

Furthermore:
H:[Aii] and A, :[ij]
where ¢=01..,n ; r=01...,/
and i=01...m ; j=01..,i

At last, subtract one from each element of the diagonal in matrix H
(¢=i & r=j)sobecomes (T,;—1),for more detail see Appendix A.

A computation efficient way to calculate the linear algebraic systems of
coefficients for equ.(5) is to store the matrix H and compute
H'H and H'G inequ.(6), if n>m, then we use any procedure to solve
the linear system :

H'G =H"HF
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While if n=m we use directly the methods for solving equ.(6) . We
discuss the case wheren=m, substitute the values f,’s in equ.(3),we get the

approximation solution f"(x,y) of equ.(1).Then the resulting method error
e(x,y)= f(x,y)— f(x,y) satisfies:

lell. = supﬂe(x, y)|:(xye D} (as m,n — «0),( Vasile,2001)
Because the calculation of error, given in above, is not easy so we use the
norm of matrix to study the quantitatively of the error in this approximation

method, and we use the relative error which is Hf i ﬂ|f||,(John & Kurtis,2004).

The method presented above was implemented in the MATLAPG.5, (see
Appendix B).

Numerical tests
Now we illustrate our method by given three numerical examples the exact
solutions of which are known:

Example(1):

Consider the following integral equation

f(x,t)= %(1— 2xcos(t)) — x* +1t + ﬁ(x cos(t) —sy) f(y,s)dyds ,(x,t) €[01]x[0,1]

So that:  k(xt,y,s)=xcos(t)—sy and g(x,t)=%(1—2xcos(t))—x2+t

To process equation above we evaluate the quantities T, . and asfaaf”f
at (x,,t,) =(0,0) andtake n=m=2, so we obtain
[-3/4 1/6 1/6 1/16 1/9 1/16]
1 -1/2 1/2 1/6 1/4 1/6
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0
0 0 0 0 -1

H= I.anmi] =

o O o o

And

h T
G:{ ag} —[1/3 -2/3 1 -2 0 0O
asraynr

Next, we substitute these values in equ.(6) then getting the values of F as:
F=[1/2 0 1 -2 0 0]
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Which are the coefficients of Taylor’s series. Putting these values in

Taylor expansion (3) we obtain 1A°(x,t)=0.5+t—x2 which is the exact
solution.

We could do all these manipulations in program, by writing it for this
propose, which can find the relative error for it with Running Time (R.T.).In
this example Error=0.0 and R.T=0.844.

Example (2):
Consider the following double-Fredholm integral equation

11
f(x,y) = x+sin(t) - éex + _[ I ye* f (y,s)dyds (x,t) e[-11]x[0]]
0-1
whose exact solution is:
f (x,t) = x+sin(t)

The exact solution will be approximated by %(x,t), by Taylor’s method in
section-3. Take

m=n=3 with(x,,t,) = (0,0), after obtaining H and G substituting them in
equ.(6) , then
we getthevalueof Fas: F=[0 1 1. 0 0 0 0 0 0 -1
Which are the coefficients of Taylor’s series. Putting these values in equ.(3)
to get:

A B 1.,
f(x,t)_x+t—§t

Table (1) presents a comparison between the exact and approximate solution
which depends on relative error and running time with different value of

m and n.
n=m Approximation solution Error R.T
3 /f\(x, t) = X+t — 1.666667t° 0.003315 1.844
/f\(x,t) — X+t 1.666667t° + 0.008333t° 6.86637x10° | 6.906
7 /f\(x,t) — X+t —1.666667t° + 0.008333t° — 0.000198t 1.01465x10° | 19.328
9 /f\(x, £) = x + t - 1.666667t> + 0.008333t> — 0.000198t/ + 0.0000027¢° | 1.63335x107 | 44.781
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Example (3):
Consider the problem

f(x,y) =tcos(x)— cosl) +:in(1)_1x2e‘ +‘1[J1.32x2yet f(y,s)dyds (x,t)<[0,1]x[0]]

whose exact solution is:
f (x,t) =tcos(x)

The exact solution will be approximated by %(x,t), by Taylor’s method in

section (3).Take
m=n=2 with(x,,t,) = (0.5,0.5), after obtaining H and G substituting them

in equ.(6) , then we get the value of F as :
F= [0.439396 —0.237292 0.878788 —0.433950 -0.477005 0.60511x10°

Which are the coefficients of Taylor’s series. Putting these values in equ.(3)
to get:

f (x,t) = 0.118948 — 0.237292x + 0.878188t — 0.216975(x — 0.5)?
—0.477005(x — 0.5)(t — 0.5) + 0.302555x 103 (t — 0.5)?

Table (2) presents a comparison between the exact and approximate solution
which depends on relative error and running time with different value of
m and n.

n=m Error R.T
2 0.029477 1.438
3 0.002400 3.218
4 4.70887x10™ 6.547
S 2.39951x10°° 10.750
6 3.66377x10°° 18.078

Conclusions
In this paper, we have introduced a new numerical method for

approximating the solution of two-dimensional Fredholm integral equations, in
which a Taylor expansion is used. Several examples were applied for
illustration and good results achieved. We conclude the following points:
1.The good approximation depends on:

I. Increasing the number of terms taken in Taylor method (see table (1&2)).

ii.The good estimate of T . in equ.(5) which is made by using suitable

nrmi

quadrature method for double integration.

20



Journal of Kirkuk University —Scientific Studies , vol.1, No.1 ,2006

2.The method described here should work reasonably well on problems where
the unknown function f is assumed to be a polynomial and get the exact
solution in many cases.

3.The disadvantage here, when we take n-large number we get very large square
(n+)(n+2) y (n+)(n+2)
2

matrix H in equ. (6) with dimension , which need

large memory of computer with too much time to compute it.
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Appendix (A)
For instance, in equation (5) let us take:
() n=01 & m=1 andobtain

of (%, t,) f (X, t,)
n=0;m=1 sor=0 f(X o’to) = g(xo'to) + 1:(Xo’to)-roooo"‘¢T0010 #Toon
t t t t
n=1:m=1 sor=0 o (2;' 0) = 59(2;, 0) + F(Xo,t0) Ti000 + a (2;’ O)T1010+ a (20’ O)Tlon
S
of (X,,t,)  09(X,,t,) of (X,,1,) of (x,,t,)
r=1 5‘(; 9° = 5(; 2+ f(XO’tO)TllOO+¢T1110 #Tllll
Rewrite equation above in matrix formas: G =HF
g(xo ’to) (roooo _1) T0010 T0011 f (Xo 1to)
—19y (Xo ) to) = TlOOO (rlOlO -1) T1011 fy (Xo 'to)
g, (X, 1) Ti100 Tia10 (Ti =D | (X0, 1)
(i) n=012 & m=2 we obtain:
[ g(XO'tO) ] _(TOOOO_l) TOOlO TOOll TOOZO TOOZl T0022 T f(XO'tO) i
g y (XO 'tO) TlOOO (T1010 _1) TlOll T1020 TlOZl TlOZZ fy (XO ’tO)
_ gs(XO’tO) — TllOO TlllO (rllll_l) TllZO TllZl TllZZ fs (XO'tO)
g yy (XO 1 tO) TZOOO T2010 T2011 (TZOZO - 1) T2021 T2022 fyy (XO ' tO)
g ys (XO ’tO) T21OO T2110 T2111 T2120 (T2121 _1) T2122 fys (XO 1 tO)
_gss (XO’tO)_ L T2200 T2210 T2211 T2220 T2221 (T2222 _1)__ fss (XO'tO)_
Appendix (B)

In this appendix we introduce a program in MATLABG6.5 for the
method which is given in section-3:
clc
format long
syms xtys
% [a,b];[c,d] is the boundary points of integrals
a=0;b=1;c=0;d=1;
% [x0,t0] is the around points of Taylor's method
x0=0.5 ; t0=0.5;
% [n,m] is the number of terms in Taylor expansion
n=3; m=3;
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% tic & toc is using for determine the time in program
tic
q=(n+1)*(n+2)/2;
tt=sym(zeros(q)); gl=sym(zeros(q,1));
L=1;
for i=0:n
for j=0:i
W=i-j;
[z,99]=prol(x0,t0,w,));
LL=1;
for i1=0:m
for j1=0:i1
wl=il-j1;
z11=((y-x0)*w1)*((s-t0)"j1);
wll=factorial(wl)*factorial(j1);
zz=z711/w11;
Ss=7*77;
t11=int(int(ss,y,a,b),s,c,d);
if (L==LL)
tt(L,LL)=t11-1;
else
tt(L,LL)=t11;
end
LL=LL+1;
end
end
91(L,1)=gg;
L=L+1;
end
end
cl=tt\g1;
cq=vpa(cl,6);
Ls=1;f1=0;
for i=0:n
for j=0:i
W=i-j;
w4=factorial(w)*factorial(j);
f1=f1+(cq(Ls)*(x-x0) w*(t-t0)"j)/w4;
Ls=Ls+1; end
end
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toc
% The following steps using to find relative error's by matrix-norm(2)
f=vpa(f1,6),p1g=char(f);apg=inline(plq,'x’,'t);
exact=t*cos(x) ,ex=char(exact);exa=inline(ex,'x','t");
n0=100;m0=100;
DF=zeros(n0,m0);DD=zeros(n0,m0);
h0=(b-a)/(n0-1);k10=(d-c)/(m0-1);
for i0=1:n0
x0=a+(i0-1)*h0;
for j0=1:m0
t10=c+(j0-1)*k10;
DD(i0,j0)=exa(x0,t10);
DF(i0,j0)=apq(x0,t10);
end
end
Error=norm(DD-DF)/norm(DD),
function [kg,gk]=pro1(x0,t0,w,j)
format long
symsxtys
k=s"2*x"2*y*exp(t) ;
k1=diff(k,'x',w);k2=diff(k1,'t"));
k3=char(k2);
z1=inline(k3,x','t''y",'s");
kg=z1(x0,t0,y,s);
=t*cos(x)-1/4*x"2*exp(t)*cos(1)-1/4*x 2*exp(t)*sin(1)+1/4*x 2*exp(t) ;
g2=diff(g,'x",w);
g3=diff(g2,'t’J);
g4=char(g3);
g5=inline(g4,'x','t");
gk=-g5(x0,t0);

(=]
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