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Abstract 

 
In this paper a new method for solving the integral equation in space-time which arises 

in mathematical physics, mechanics and the heat conduction theory is presented. The central 

idea is: First, differentiating both sides of two-dimensions Fredholm integral Equations n-

times with respect to both variables x and t, second, substituting the Taylor series of two 

variables for the unknown function, and third, obtain a system of linear equations which can 

be solved by a suitable truncation scheme .Lastly,the double-quadrature rules are used to 

calculate the required integrals in this procedure. The presented algorithm is illustrated by 

some numerical examples with comparison tables. 

 

Introduction  
   Consider the following linear two-dimensional Fredholm integral 

equations of second kind:   

  

d

c
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a

dsdysyfsytxktxgtxf ),(),,,(),(),(                                ….(1)               

For RDgandRDDkwheredcbaDtx  ::],,[],[:),(  are 

assumed to be bounded and usually to be continuous, the two-variable function 

f   is the unknown function, while a,b,c and d are real constants(Vasile,2001). 

This equation has a unique solution in the space )(2 DL  , (Lechoslow,2002).The 

considered integral equations in space-time play a very important role in 

mechanics and technology, with special attention paid to large sense of power 

engineering. Some initial-boundary problems for a number of differential partial 

equations in physics can be reduced to consider integral equation, 

(Lechoslow,2002).Numerical results for equation (1) have been treated by many 

authors and different methods are used, by:Valise Carutasu  (spline functions), 

Lechoslaw Hacia (Galerkin method) and Brunner (collocation  method), 

(Vasile,2001,Lechoslow,2002,Brunner&Kurtis,1989).Fewer numerical and 

expansion methods are known for the several-dimensional Fredholm integral 

equations.In this paper we will deal with the Taylor expansion method for the 

two-dimensional linear Fredholm integral equations of second kind. 
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Taylor series (John&Kurtis,2004,Richard&Douglas,1997) 
   Suppose ),( yxf  and its partial derivation through order )1( m are 

continuous throughout a rectangular region centered at a point ),( 00 yx  . 

Then throughout the region,  
 

       

 … (2) 

 

 

 

Where mR  , the remainder after m-terms, is given by: 
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And if we expanded m-th term formally by the binomial theorem, we get  
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Finally we substitute this result in the equation (2) and we obtain the 

following equation   
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 The method 
In order to solve equ.(1) we take the partial derivatives n-times with 

respective to x and t respectively, and get : 
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Replace Dtxbytx ),(),( 00  in the last equation, we have  
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Then expand ),( syf  in Taylor series of two-variables at ),( 00 tx  as in equ.(3) 

and substituting it in equ.(4) to obtain : 
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And we rewrite it, since by substituting the derivative part of f and g at the   

point ),( 00 tx  so we replace x and t in the derivative function f and g by y and s 

respectively which are the same and we get: 
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Finally, we will attempt to solve the infinite relations from equ.(5) to 

determining the Taylor coefficients by a suitable technique which depends on 

truncating the series in such way that we get a determinate system at every step. 

Equation (5) can be expressed in matrix from as: 
 

                                                    HFG                                                                         … (6) 

Where H and G are constant matrices with dimensions pp  and 1p  

respectively, and F is a matrix of Taylor’s coefficients with dimension 1p  , 

such that:   ...2,1,0,
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At last, subtract one from each element of the diagonal in matrix H  

( jri &  ) so becomes   )1( rijT  , for more detail see Appendix A. 

A computation efficient way to calculate the linear algebraic systems of 

coefficients for equ.(5) is to store the matrix H  and  compute   

GHandHH TT  in equ.(6) , if mn   , then we use any procedure to solve 

the linear system : 

                                                   HFHGH TT   
 

…(5) 
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While if  mn   we use directly the methods for solving equ.(6) . We 

discuss the case where mn  , substitute the values qf ’s in equ.(3),we get the 

approximation solution ),(^ yxf  of equ.(1).Then the resulting method error      

),(),(),( ^ yxfyxfyxe     satisfies:  

 

   ),(,(:),(sup 


nmasDyxyxee ,( Vasile,2001) 

Because the calculation of error, given in above, is not easy so we use the 

norm of matrix to study the quantitatively of the error in this approximation 

method, and we use the relative error which is  fff
^

 ,(John & Kurtis,2004). 

The method presented above was implemented in the MATLAP6.5, (see 

Appendix B). 

 

Numerical tests 

      Now we illustrate our method by given three numerical examples the exact 

solutions of which are known: 

Example(1): 

Consider the following integral equation 

 
                                                  

 

 

So that: txtxtxgsytxsytxk and  2))cos(21(
3

1
),()cos(),,,(  

To process equation above we evaluate the quantities  
rnr

n

nrmi
ys

g
andT




 

at )0,0(),( 00 tx    and take   2 mn ,   so we obtain 
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 Next, we substitute these values in equ.(6) then getting the values of F  as: 

                TF 002102/1   
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  Which are the coefficients of Taylor’s series. Putting these values in 

Taylor expansion (3) we obtain    2
^

5.0),( xttxf       which is the exact 

solution. 

  We could do all these manipulations in program, by writing  it for this 

propose, which can  find the relative error for it with Running Time (R.T.).In 

this example Error=0.0 and R.T=0.844.  

  

Example (2): 

Consider the following double-Fredholm integral equation  
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]1,0[]1,1[),(),(
3

2
)sin(),( txdsdysyfyeetxyxf xx           

whose exact solution is:  
                                            )sin(),( txtxf   

The exact solution will be approximated by ),(
^

txf , by Taylor’s method in 

section-3. Take 

 

3 nm  with )0,0(),( 00 tx , after obtaining H   and G  substituting them in 

equ.(6) , then 

we get the value of F as :   TF 1000000110   

Which are the coefficients of Taylor’s series. Putting these values in equ.(3)               

to get:  

                                        5
^

!3

1
),( ttxtxf   

 

 

Table (1) presents a comparison between the exact and approximate solution 

which depends on relative error and running time with different value of 

nandm . 

n=m Approximation solution Error R.T 

3 3
666667.1),(

^

ttxtxf   0.003315 1.844 

5 5
008333.0

3
666667.1),(

^

tttxtxf   6.86637 510  6.906 

7 7
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5
008333.0
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^

ttttxtxf   1.01465 610  19.328 

9 9
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7
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5
008333.0

3
666667.1),(

^

tttttxtxf   1.63335 710  44.781 
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  Example (3): 

    Consider the problem  
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whose exact solution is:  
                                             )cos(),( xttxf   

The exact solution will be approximated by ),(
^

txf , by Taylor’s method in 

section (3).Take 
2 nm  with )5.0,5.0(),( 00 tx , after obtaining H   and G substituting them 

in equ.(6) , then we get the value of F as : 

                                             

       

Which are the coefficients of Taylor’s series. Putting these values in equ.(3) 

to get:  
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 Table (2) presents a comparison between the exact and approximate solution 

which depends on relative error and running time with different value of  

nandm . 

                           

 

 

 

 

 

 

Conclusions 
In this paper, we have introduced a new numerical method for 

approximating the solution of two-dimensional Fredholm integral equations, in  

which a Taylor expansion is used. Several examples were applied for 

illustration and good results achieved. We conclude the following points: 

1.The good approximation depends on:  

    i. Increasing the number of terms taken in Taylor method (see table (1&2)). 

    ii.The good estimate of nrmiT  in equ.(5) which is made by using suitable 

quadrature method for double integration. 
 

n=m Error R.T 

2 0.029477 1.438 

3 0.002400 3.218 

4 4.70887 410  6.547 

5 2.39951 510  10.750 

6 3.66377 610  18.078 
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2.The method described here should work reasonably well on problems where 

the  unknown function  f  is assumed to be a polynomial and get the exact 

solution in many cases. 

3.The disadvantage here, when we take n-large number we get very large square 

matrix H  in equ. (6) with dimension 
2

)2)(1(

2

)2)(1( 


 nnnn
 , which need 

large memory of computer with too much time to compute it. 
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المضاعفة -طريقة التوسيع لحل معادلات فريدهولم التكاملية  
 
 

 شازاد شوقي احمد
جامعة السليمانية –كلية العلوم   

 
 الخلاصة

  

تظهر في الفيزياء الرياضية, أعطينا في هذا البحث طريقة جديدة لحل المعادلات التكاملية المضاعفة التي 
 كالميكانيكا ونظرية التوصيل الحراري. أن الفكرة الأساسية في هذا البحث هي:

  t.و x(من المرات بالنسبة للمتغيرين  n)-أولًا: أجرا عملية التفاضل لطرفي معادلة فريدهولم التكاملية ذات البعيدين ل 
),(لدالة المجهولة )ثانياً: تعويض متسلسلة تيلور لمتغيرين مكان ا  txf.) 
 ثالثاً: نحصل على نظام من المعادلات الخطية والتي يمكن حلها بالطرق المختلفة )المناسبة (. 

م إيضاح ـذلك تـاب التكاملات المضاعفة المطلوبة في هذا البحث وكوأخيرا ًَ تم استخدام الطريقة التربيعية لحس          
 الخوارزمية المذكورة أعلاه ببعض الأمثلة العددية مع أعطاء جداول مقارنة.

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 23 

Journal of Kirkuk University –Scientific Studies , vol.1, No.1 ,2006 

 

 

Appendix (A) 
 For instance, in equation (5) let us take:          

         (i) 1&1,0  mn    and obtain 
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           Rewrite equation above in matrix form as:   HFG   
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Appendix (B) 

     In this appendix we introduce a program in MATLAB6.5 for the 

method which is given in section-3:   

clc 

format long 

syms x t y s  

% [a,b];[c,d] is the boundary points of integrals   

a=0 ; b=1 ; c=0 ; d=1 ; 

% [x0,t0] is the around points of Taylor's method   

x0=0.5 ; t0=0.5; 

% [n,m] is the number of terms in Taylor expansion 

n=3; m=3 ; 
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% tic & toc is using for determine the time in program 

tic 

q=(n+1)*(n+2)/2; 

tt=sym(zeros(q)); g1=sym(zeros(q,1)); 

L=1; 

for i=0:n 

    for j=0:i 

        w=i-j; 

        [z,gg]=pro1(x0,t0,w,j); 

        LL=1; 

        for i1=0:m 

            for j1=0:i1 

                w1=i1-j1; 

                z11=((y-x0)^w1)*((s-t0)^j1); 

                w11=factorial(w1)*factorial(j1); 

                zz=z11/w11; 

                ss=z*zz; 

                t11=int(int(ss,y,a,b),s,c,d); 

                if (L==LL) 

                    tt(L,LL)=t11-1; 

                else 

                    tt(L,LL)=t11; 

              end      

     LL=LL+1; 

            end 

        end 

        g1(L,1)=gg; 

    L=L+1; 

       end 

end 

    c1=tt\g1;  

    cq=vpa(c1,6); 

Ls=1;f1=0; 

for i=0:n 

    for j=0:i 

    w=i-j; 

        w4=factorial(w)*factorial(j); 

f1=f1+(cq(Ls)*(x-x0)^w*(t-t0)^j)/w4; 

        Ls=Ls+1;    end 

end 
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%  The following steps using to find relative error's by matrix-norm(2)      

f=vpa(f1,6),p1q=char(f);apq=inline(p1q,'x','t'); 

exact=t*cos(x) ,ex=char(exact);exa=inline(ex,'x','t'); 

n0=100;m0=100; 

DF=zeros(n0,m0);DD=zeros(n0,m0); 

h0=(b-a)/(n0-1);k10=(d-c)/(m0-1); 

for i0=1:n0 

    xo=a+(i0-1)*h0; 

    for j0=1:m0 

        t10=c+(j0-1)*k10; 

        DD(i0,j0)=exa(xo,t10); 

        DF(i0,j0)=apq(xo,t10); 

    end 

end 

Error=norm(DD-DF)/norm(DD),   

function [kg,gk]=pro1(x0,t0,w,j) 

format long 

syms x t y s 

        k=s^2*x^2*y*exp(t) ; 

        k1=diff(k,'x',w);k2=diff(k1,'t',j); 

        k3=char(k2); 

        z1=inline(k3,'x','t','y','s'); 

        kg=z1(x0,t0,y,s); 

       g=t*cos(x)-1/4*x^2*exp(t)*cos(1)-1/4*x^2*exp(t)*sin(1)+1/4*x^2*exp(t)  ; 

         g2=diff(g,'x',w); 

        g3=diff(g2,'t',j); 

        g4=char(g3); 
        g5=inline(g4,'x','t'); 

        gk=-g5(x0,t0); 

 
 

 

 

 

 

 


