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Abstract 
 

         The dynamics of the thin layer which flows steadily between two vertical guide 

wires was investigated but with zero shear stress at their bounding surfaces where the 

gravity has no significant effect on the liquid film. We apply the Navier-Stokes 

equations in two dimensional steady flows for incompressible fluid to a falling liquid 

curtain and we present the derivation of the differential equation that governs such flow 

and we obtain a solution for these equations which is valid for this liquid curtain , where 

we restrict our works to the case where the domain under consideration is long and thin, 

the solution of the governing equation is obtained by analytical method, and in this case 

there is a critical solution  2/1)
2

()(


 cg   for large   when the parameter   is equal to 

zero, where 2

22

0 H
R

P


   and which is identical to the case when the normalized 

pressure 
0p  is equal to zero. Generally, we solve the equation when 0p  is not equal to 

zero, and the thickness of the film increases as    increases where H
2


  . 

Keywords: Navier-Stokes equations, continuity equation, Non-linear differential 

equations. 

 

Introduction 
      The dynamic of a thin liquid film flowing steadily between two vertical 

guide wires, where the effect of surface curvature is taken into account, is 

investigated. The Navier –stokes equations integrated over the film 

thickness and an approximate non-linear differential equation is obtained 

by neglecting the higher order terms with respect the thickness of the thin 

liquid films and the results are compared with Cyrus (Cyrus,1987) works 

who neglects the effect of surface curvature and also results are compared 

with the experimental measurements of Brown (Brown, 1961).      

      The objective of the present analysis is to apply the Navier-Stokes 

equation to a falling liquid curtain, and present the derivation of the 

differential equations that governs the flow of the liquid curtain and to 

obtain a solution of these equations which is valid for thin liquid film. 
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     In addition to engineering applications, a solution will serve as a first 

order approximation of the velocity profile. The domain of validity for each 

equation is established by comparing the numerical solution with the 

experimental results of Brown (Brown, 1961)    

 

Equations of steady motion in films with zero shear-stress at 

their bounding surface. 
      To describe the flow of a viscous fluid within a symmetric film in two 

dimensions, the Cartesian coordinates x  and y  are taken in which the x-

axis is the axis of symmetry, and the flow is predominantly in the x-

direction. In figure (1) the transverse dimensions are greatly enlarged by 

comparison with the longitudinal dimensions for clarity of presentation.  

      Let ),( yxu , ),( yxv  be the corresponding velocity component in  x and y 

directions respectively and )y,x(p  the pressure , obtain the non-linear 

equation with  rupture time (Leshansky & Rubinstein ,2004). Let the 

equation   of the free surface of the liquid film with be  

         )(xhy                                                                                             …(1) 

where the liquid film flows steadily between two vertical wires as shown  

in figure (1)  

             

 
Figure (1): Schematic diagram of a free surface- liquid film flow 

 

      Normally in thin liquid films, the film thickness is much smaller than 

the width as (Rutayna, 2005), and therefore we assume two-dimensional 

incompressible flow. 

     The steady two dimensional incompressible fluid flows governed by the 

following equation of motion: 

y=h(x) 

H 

x 

y 
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1-Continuity equation: 

      We can express the connection between area and velocity in an 

equation, called the equation of continuity. The continuity equation in a 

differential form for two dimensional incompressible flows has the form 

(Stokes,1945) 

   0









y

v

x

u
                                                                                             …(2) 

For steady flow from Stoke’s (Stokes,1945) the momentum equation has 

the form: 

x-momentum       

                   )(
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y-momentum  
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                                                 ...(4)  

where   xx ,  xy  and yy  are the components of the total stress tensor given 

in the standard notation, where the stress tensor and  then for 

incompressible flow, these stresses has the following forms: 

 

               
x

u
pxx 


  2   

             )(
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u
yxxy 







                                                             … (5) 

and 

            
y

v
pyy 


  2  

where is the coefficient of viscosity of liquid, andu  is component  

velocity, the density   is assumed to be constant throughout the process. 

          Let )(xhy   represent the thickness of the liquid film at a point x (see 

equation (1)).    We define the equation of the free surface of the film by 

the function ),( yxF  as follow  

Since from equation (1) we have 

      0)(  xhy  and then  0)(),(  xhyyxF                                                  ... (6) 

represents the free surface equation. 

Eventually, we restrict attention to cases in which   

     1
dx

dh
                                                                                                  … (7) 

over the domain x  under consideration. However we do not impose any 
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geometrical constraint on the total variation of )(xh  over   this domain.  In 

these respects, the theory retains   many    of the   features of standard 

theories of fluid flow in thin domains: namely mathematical hydraulics in 

an experiments, Lubrication theory and boundary layer theory. 

      The appropriate mode of incorporating the condition eq.(7) into the 

theory appears to be as follows. 

      We consider the class of steady flows in which the asymptotic 

conditions as x  are uniform:             

        

0),(

),(

)(







yxv

Uyxu

Hxh

                                                                                       … (8) 

where H  and  0U  are constants . 

      The boundary of the film is a streamline, and therefore the substantial 

(material) derivative of ),( yxF , that is  
Dt

DF  must vanish at 0),( yxF . 

Thus results in the following boundary conditions: 

From eq. (2), we have 

         0










y

F
v

x

F
u

Dt

DF
                                                                           …(9) 

which gives    
dx

dh
uv       at    )(xhy                                                    …(10) 

      For the balance of the surface forces on the boundary, the Cartesian 

components of the unit normal vector  n  are needed which are given by:                   

           yx jninn 


           

            2/12))((1)(


 xhxhnx                        

and                                                                                                         …(11)                           

            2/12))((1


 xhny   

     The curvature of the liquid film is given by (Rutayna, 2005) 

          2/32 )](1[

)(

xh

xh
K




  ,                                                                ...(12)          

and since we restrict attention to the case given by eq.(7), the curvature 

eq.(12) can be simplified by since 1
dx

dh  then the  term )(2 xh  is very small 

to give  

         )(xhK                                                                                        ... (13)     
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    The surface tension  , creates a stress on the free surface of the  liquid 

film, following   (Stokes,1945), the balance of the surface forces on the free 

surface, is given by    

       
xKn

x
nxxy

nxy                                                                    ... (14) 

and 

      yKnynyyxnyx                                                              …(15) 

where   is the surface tension, using equations (6) for incompressible flow 

( 0.  q ), equations (14) and (15) are gives respectively as follows:  
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 )2(                                                 … (16) 

and   
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
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


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u
)(

xy Knn
y

v
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


 )2(                                                        ... (17) 

Now we decompose the velocity  u  and the normal stress xx  as              

       .........),(),()(),( 2

2

10  yxuyxuxuyxu                               … (18)                                                            

and 

      .........),(),(
210

2  yxyx xxxxxxxx                                   …. (19) 

here   is related to .h  The functions  )(0 xu  and 0xx  are unknown at  this 

point and will be derived later in the analysis. Further below we show that 

if 1h , then 1 , and the function  u  and xx are weakly dependent   on y , 

when two variables have decomposition slices that contain statements in 

common, the variable are said to be weakly dependent.      

      With the decomposition equations (16) and (17), the continuity 

equation (2) can be integrated over the film thickness to give  

        0)(
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For the first approximation  ,...,, 32   tends to zero .We have  

      0)()0,())(,()()(0 
 Oxvxhxvxhxu                                                … (20)  

Since the liquid film is symmetric as (Rutayna, 2005), then     
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0)0,( xv   and then equation (20) gives       

       0)())(,(0  Oxhxv
dx

du
h                                                              … (21) 

substituting the boundary condition eq.(9) in the equation (21), we get 

       0)(0  O
dx

dh
u

dx

du
h  

Now, using the decomposition eq.(18) of u , to obtain  

       00
0 

dx

dh
u

dx

du
h                                                                                 …(22) 

       0).( 0  hud                                                                                   ...(23) 

     Integrate eq.(23) with respect to x , yields the global form of mass 

conservation  

          huQ 0                                                                                         ...(24) 

where  Q  is a constant representing the volumetric mass flow and 
0u is, 

therefore, the average velocity defined by 

         

h

udy
h

u
0

0

1
                                                                                     ...(25) 

Consistent with the integral form of the continuity equation (2) and without 

loss of generality, it can be assumed that 1Q  and therefore equation (24) 

gives, 

         10 hu                                                                                          …(26) 

which gives the x-component of the velocity in terms of the film thickness.     

      Now we integrate the momentum equation over the film thickness in 

the same manners. The integrals of the non-linear inertia terms in the x-

component of the momentum equation eq. (3) are 
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Restricts to the first order, we get   



h

huudy
x

u
u

0

00 '                    ...(27) 

Similarly the integral over the film thickness of the right hand side of 

equation (3) gives,  
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To the first order approximation, we get )(
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and       
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)0,(),( xhx xyxy                                        …(29) 

But )0,(xxy = 0 due to the symmetry of the flow in liquid film with respect 

to the center line and thus eq.(29) reduces to give   
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Now from equation (14), xy  is given by 
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n
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0
     

Using eq.(11), the following can be obtained  

       ))()((
0

xhK xxxy
                                                              …(31) 

on the free surface  )(xhy   , eq.(31) gives   

     )()),((),(
0

xhKhxhx xxxy
  .                                               … (32) 

   Therefore the integral of the x-component of the momentum equation   

over the film thickness can now be written as: 

       )],()([
1

00 hxxhhuu xyxx 
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                                                      …(33) 

 Substituting ),( hxxy  from equation (32) into equation (33), we get  
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uu xxxx  
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.                                    ...(34) 

Using equation (5), we can express the y-component of equation     (15) by  

       0)()(2)(
),(

)( 
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
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
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x
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      Now if the magnitude of x and u  are assumed to be ),1(O  then for a 

thin film y is )(hO  and )(xh is also of order ),(xh  where 1)(  xh .Also from  
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eq.(10), v  is of order of ,h  and from equation (4) we can find that    
y

yy




  

is of order ,h  and hence we can assume that 

        0Pyy                                                                                         … (36) 

where  
0P  is a constant representing the ambient pressure . 

Now from eq.(5), we have      
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Using equation (36) and equation (37), thus give  
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From the continuity equation (2), equation (38) becomes     
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Furthermore, the x-component of the normal stress can now be written as 
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Substituting the expression for )(xP  from equation (39) in the equation (40), 

we get  
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      Now by substituting equation (41) for the x-component of the normal 

stress tensor in equation (34), we get 
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Using equation (12) into equation (42), the following can be obtained: 
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where the  term )(2 xh  is very small to give )(xhK  .                                                                                                                                                                                                   

From eq.(8), we have as x tends to a large positive value ( x ), the film 

approaches a uniform thickness H , with velocity U , and equation (22) gives  

            0)( uhd   or 

           RUHuh             …(44)                                                                     

where



   is the Kinematics viscosity and is the Reynolds number which  
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is determined  by the boundary conditions and is taken to be small, that is  

1R , ( Reynolds number is very small). 

Now from eq.(44), we have  
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Thus from continuity equation (2), we get  
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 Furthermore equations (39) and (45), gives the pressure )(xP , where 
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      In this section, we obtain the dimensional non-linear equation (43) such 

governs the thin liquid films on the vertical guide wires.  

2- Dimensional analysis: 

      We now introduce non-dimensional variables as follows: 
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where  is a non-dimensional variable and )(f  is a non-dimensional 

function, x  and )(xh are dimensional variables, function respectively and   

R is Reynolds number.  

Using equation (45), equation (43), reduces to  
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Now from the transformation eq.(48) and eq.(49), we have 
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 hence                                                                                                  … (51) 
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substitute eq.(50) in the  equation (49), we get  

                                                                                                                                                        

044 222  fffffffff                                                     … (52) 

where 

            2

22

0 H
R

P


        and      H

2
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So that, in a given liquid,   is determined by H  alone and the surface 

tension     depends on    and H . 

      We have to note here that the transformation eq.(48) and eq.(49) 

ensures that the domain under consideration is long and thin and that the 

films are justified in a domain                            in which  )(f  remains 

bounded, The mathematical origins of the terms in eq.(40) are as follows:  

Inertia f  , Viscosity
244 fff  , Surface tension  fff  2  Pressure  ff  2  

Now as    ,  the boundary conditions require that  

         )(1)(  gf  ,   1                                                                   …(53) 

      The asymptotic condition eq.(8) as x  with the transformations 

eq.(48) and eq.(49) become 

         1)( f ,  1)( u   and 0)( v since at  x  also  and    
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)(     at    become  1)( f  

where   is an arbitrary constant and 0)( g , and the differential equation 

(52), then gives  

          gggggggg  2222 2444   

        0gggggg2gggg 243223                  ... (54) 

since  1 , then we have    0n  for n=2, 3, 4, … 

Thus equation (54) reduces to  

       0)1(4  gg                                                                             … (55) 

since 0 , so equation (55) has a fundamental solution of the form 
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          meg )(                                                                         … (56) 

Substitute (56) in the equation (55), to get  

 0])1(4[ 2  memm    . Since  0me       

implies that 0)1(4 2  mm                                                            … (57) 

which gives either 0m   and a trivial solution is obtained or 

         
4

1 
m                                                                                       … (58) 

      The root   m    in (58) represents a balance among viscosity,    inertia 

and pressure, the effect of surface tension being negligible. A part from 

special circumstances, in which the amplitude of the solution representing a 

viscosity-inertia is zero, the inertia term is almost always not negligible as 

the film approaches a condition of asymptotic uniform thickness and the 

importance of inertia, however, small is the Reynolds number 

      When )(f  departs from its asymptotic value of unity to an appreciable 

extent, the complete differential equation (52) must be satisfied. 

      Now the variable    does not appear explicitly in equation (52), so that 

its differential order can be reduced by one by the following 

transformations:  
               )( f    

               )()(  fg                                                                  

Thus equation (2.3.5) reduces to      

     0441 22  gggg                                                            ...(60) 

since 0g  

          
g

g
g

2

2

4

41
)(









                                                                     …(61) 

Furthermore, equation (58) can be written as 

        0)(4
1

22



 gg

gg



                                                            …(62) 

which may be integrated with respect to    to  give 

        02282 22   cgg                                                           … (63)  

where   c  is an arbitrary constant. 

      Now every solution of the original equation whose asymptotic behavior 

for large positive value of  is given by eq.(53) must pass through the point   

(1, 0) in  ),( g   plane since from (59)   )( f       and     )()(  fg   and 

from eq.(53)  we have 1)( f   as   this implies that  1  as  

  . 

... (59)                       
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Furthermore since  ,0)(  f  as ,  then one can have  0)( g  

thus equation eq.(61) at (1,0)  gives 

       
4

1
)(





g                                                                                       …(64) 

Integrate eq.(64) with respect to ,  and after condition 0)1( g              

       
1

4

1
)( cg 


 


                                                                                  ... (65)                    

 where 
4

1
1





c  thus equation (65) becomes           

       )1(
4

1
)( 


 


g                                                                                 …(66) 

which is the asymptotic behavior in  ),( g -plane. 

Now, substitute equation (66) into equation (63) and pass through (1,0), we 

get 

)1(  c  and equation (63) reduces to : 

        02)1(228 22   gg  

which has the following solution  

       





]2)1(22[164
)(

2 
g                                                  …(67) 

It is clear that the solution has asymptotic behavior as follows   

       lim
0

)(g lim
0







]2)1(22[164
2 


   

But in the case of ,0  there is  

       )(g c  

















 

22164
22lim

2/1

2











, 

                                                            

therefore   

2/1

2
)( 











cg   as  within the former class of solutions, 

there is a critical solution )(cg  such that 
4

1
)( cg   as   0 . 

Note that the locus of points at which  0)(  g  and from equation (61) 

for 0 , there is 

              
4

1
)( cg   . 

One has to note that when 0  equation (67) has the form  

             





]1[2164
)(


g                                                            … (68) 
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there is the critical solution )(cg  such that     
4

1
)( cg   as   0  

and also   
2/1

2
)( 











cg   as   .     

Some of the solution curves of equation (68) in ),( g plane are presented in 

figures (2, 3, and 4) for different value of   and  , we note that  t  in 

the following figure. 

 

 

 

 

 

 

 

 

Figure (2): Solution curves in ),( g -plane for different values of 

1.0,1.0    

 

 

Figure (3): Solution curves in ),( g -plane for different values of 

01.0,01.0    
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Figure (4): Solution curves in ),( g -plane for different values of  

01.0,0     

      This equation will be solved but without the surface tension term 

namely “ 02  fff “ and in this case the equation (52) becomes  

       044 22  ffffff                                                                …(69) 

the transformation eq.(59), reduces equation (69) to give 

  0441 2   gg for  0f  in this case      

        





4

41
)(

2


g
g                                                                           … (70)   

 equation (70) is integrated, and after some simplifications, the solution of 

equation (70) has the form    

        )1(
4

1
)( 2  g .                                                             … (71) 

Suppose that 00 p , from equation (69) one gets  

 

      044 2  ffff  or 

      f

ff
f

4

4 2
                                                                              … (72) 

 

Now equation (43) is solved numerically by using matlab program 

(William ,2001) with initial conditions given from Brown’s experiment, 

namely 6.4)12( f   and   32.0)12( f  the solution has the form 

         














)
115

1491

460

497
exp(52932

)
115

1491

460

497
exp(

5

11431
)(




f                             … (73) 
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The solution curve of equation (73) is shown in figure (5) in ),( f plane; 

we note that  t  in the figure below. 

 

 

   

     

 

 

 

Figure (5): solution curve of equation (45). 

     Some of the solution curves of equation (70) are shown in figure (6) in 

),( g plane for different value  

 

 

 

 

 

 

 

Figure (6): Solution curves in ),( g -plane for different values of 

• 1.0 , • 01.0 , • 0  

 

Conclusion 
           The dynamics of a free-surface liquid film is very useful in 

industrial coating and spinning processes. The solution of the thickness of 

the liquid film is determined for different values of the parameter   and 

from the solution curves it seems that the thickness or the liquid film 

increases as the parameter   increases for a thin liquid film flowing 

steadily between two vertical guide wires where we consider two cases. 

  

g 
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     In the first case the gravity is taken to be zero and in the second case 

when gravity is taken into account, the two cases are considered to see 

what the significant effect of gravity is. 
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 ديناميكية الأغشية الرقيقة السائلة
 

 

**دجوزيف غانم عبدالأح   و   *فريدون قادر حمه صالح  
جامعة السليمانية-كلية العلوم   ** جامعة الموصل -كلية التربية        *   

 

 الخلاصة
 

لى السطوح الجريان للطبقة الرقيقة بين دليلين عمودين قد درست ولكن بانعدام  جهد القص ع ان ميكانيكية     
(  في النظام Navier-Stokesالحره وان الجاذبيه ليس لها اي تاثير على غشاء السائل,لقد تم استخدام معادلات)

الثنائي البعد الازمني والغير قابل للانضغاط . لقد تم اشتقاق المعادلات التفاضلية التى تحكم هذا الجريان وقد 
واسعاً ورقيقاً. وكذلك تم الحصول على حل المعادلات التي تحكم حصلنا على حل لها عندما يكون فيها المجال 

(2/1الجريان تحليليا حيث وجد حل حرج 
2

()(


 cg   عندما تكون كبيرة و  المعلمة     مساوية الى

2الصفر حيث ان  

22

0 H
R

P


   0مطابقة مع  الحالة التى يكون فيها  الضغط القياسى  تكونp   مساوي الى

غير مساوية الى الصفر وباستخدام قيم مختلفة  0pالصفر, و بصورة عامة تم  حل المعادلة  عندما تكون 
 .  ياد المعلمةتبين بان السمك يزداد  بازد  للمعلة 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


