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Abstract

The dynamics of the thin layer which flows steadily between two vertical guide
wires was investigated but with zero shear stress at their bounding surfaces where the
gravity has no significant effect on the liquid film. We apply the Navier-Stokes
equations in two dimensional steady flows for incompressible fluid to a falling liquid
curtain and we present the derivation of the differential equation that governs such flow
and we obtain a solution for these equations which is valid for this liquid curtain , where
we restrict our works to the case where the domain under consideration is long and thin,
the solution of the governing equation is obtained by analytical method, and in this case

there is a critical solution gc(g):(;)lf2 for large & when the parameter « is equal to

zero, where a:%Hz and which is identical to the case when the normalized
PFR

pressure p, is equal to zero. Generally, we solve the equation when p, is not equal to
zero, and the thickness of the film increases as s increases where g — LZ H .

ol
Keywords: Navier-Stokes equations, continuity equation, Non-linear differential
equations.

Introduction

The dynamic of a thin liquid film flowing steadily between two vertical
guide wires, where the effect of surface curvature is taken into account, is
investigated. The Navier —stokes equations integrated over the film
thickness and an approximate non-linear differential equation is obtained
by neglecting the higher order terms with respect the thickness of the thin
liquid films and the results are compared with Cyrus (Cyrus,1987) works
who neglects the effect of surface curvature and also results are compared
with the experimental measurements of Brown (Brown, 1961).

The objective of the present analysis is to apply the Navier-Stokes
equation to a falling liquid curtain, and present the derivation of the
differential equations that governs the flow of the liquid curtain and to
obtain a solution of these equations which is valid for thin liquid film.
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In addition to engineering applications, a solution will serve as a first
order approximation of the velocity profile. The domain of validity for each
equation is established by comparing the numerical solution with the
experimental results of Brown (Brown, 1961)

Equations of steady motion in films with zero shear-stress at
their bounding surface.

To describe the flow of a viscous fluid within a symmetric film in two
dimensions, the Cartesian coordinates x and y are taken in which the x-
axis is the axis of symmetry, and the flow is predominantly in the x-
direction. In figure (1) the transverse dimensions are greatly enlarged by
comparison with the longitudinal dimensions for clarity of presentation.

Let u(x,y), v(x,y) be the corresponding velocity component in x and y
directions respectively and p(x,y) the pressure , obtain the non-linear
equation with rupture time (Leshansky & Rubinstein ,2004). Let the
equation of the free surface of the liquid film with be

y =h(x) (1)
where the liquid film flows steadily between two vertical wires as shown
in figure (1)

I [,
<H, y=h(x)
'

X

Figure (1): Schematic diagram of a free surface- liquid film flow

Normally in thin liquid films, the film thickness is much smaller than
the width as (Rutayna, 2005), and therefore we assume two-dimensional
incompressible flow.

The steady two dimensional incompressible fluid flows governed by the
following equation of motion:
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1-Continuity equation:

We can express the connection between area and velocity in an
equation, called the equation of continuity. The continuity equation in a
differential form for two dimensional incompressible flows has the form

(Stokes,1945)

ou ov
A, N ...(2

el (2)
For steady flow from Stoke’s (Stokes,1945) the momentum equation has

the form:

X-momentum
0
ua_u+va_u=£(—ao_xx+—o-xy) (3)
OoX oy p OX oy
y-momentum
0 0
Myt O-yx+ﬂ) ...(4)

OX oy p OX oy
where ¢,, o, and o, are the components of the total stress tensor given

in the standard notation, where the stress tensor and  then for
incompressible flow, these stresses has the following forms:

0
Oxx = P=2u—
O'XyZGyXZ—,u(%—G—%) (5)
and

Oyy = p—Zy%
where ,is the coefficient of viscosity of liquid, andu is component
velocity, the density , is assumed to be constant throughout the process.

Lety=h(x) represent the thickness of the liquid film at a point x (see
equation (1)). We define the equation of the free surface of the film by
the function r(xy) as follow
Since from equation (1) we have

y—h(x)=0 and then F(x,y)=y-h(x)=0 ... (6)
represents the free surface equation.
Eventually, we restrict attention to cases in which

dh
&<1 (7)

over the domain x under consideration. However we do not impose any
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geometrical constraint on the total variation of h(x) over this domain. In
these respects, the theory retains many  of the features of standard
theories of fluid flow in thin domains: namely mathematical hydraulics in
an experiments, Lubrication theory and boundary layer theory.
The appropriate mode of incorporating the condition eq.(7) into the
theory appears to be as follows.
We consider the class of steady flows in which the asymptotic
conditions as x — « are uniform:
h(x) > H
u(x,y) »u (8)
v(x,y) >0
where H and U >0 are constants .
The boundary of the film is a streamline, and therefore the substantial

(material) derivative of F(x,y), thatis DF must vanish atrF(x,y) =0.
Dt

Thus results in the following boundary conditions:
From eq. (2), we have

EZUﬁ-I—Vﬁ:O (9)
Dt ox oy
which gives v:u% at  y=h(x) ...(10)

For the balance of the surface forces on the boundary, the Cartesian
components of the unit normal vector n are needed which are given by:

—

n=in, + jn,

2}_1/2

=N+ (V)
and ...(11)

W HL2
ny :{1+(h (X)) }
The curvature of the liquid film is given by (Rutayna, 2005)
B h”(X)
- [1+ hr2 (X)]3/2 '
and since we restrict attention to the case given by eq.(7), the curvature

(12)

eq.(12) can be simplified by since %4 then the term h'*(x) is very small
to give
K = h"(x) .. (13)
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The surface tension ¥, creates a stress on the free surface of the liquid

film, following (Stokes,1945), the balance of the surface forces on the free
surface, is given by

O'Xyny +Oxx Ny = Kn, .. (14)
and
where } is the surface tension, using equations (6) for incompressible flow
(vg=0), equations (14) and (15) are gives respectively as follows:

oo, + (p=2uZn, =k, . (16)
and
(Zy gvnx+(p Zﬂ@)n =Kn, .. (17)
Now we decompose the velocity U and the normal stress o, as
u(x, y) = Uy (X) +&u (X, y) +&°Uy (X, ) +.eee. ... (18)
and
Oy =0, 80, (X Y)+E°0, (X Y) + o ... (19)

here ¢ is related to h. The functions u,(x) and o, are unknown at this
point and will be derived later in the analysis. Further below we show that
if h'<<1, then ¢<<1, and the function u and o, are weakly dependent ony,

when two variables have decomposition slices that contain statements in
common, the variable are said to be weakly dependent.
With the decomposition equations (16) and (17), the continuity
equation (2) can be integrated over the film thickness to give
[ (5—“+@)dy 0

h

j—uo(x)dy+gj2u1(x, y)dy+82}gu2(x, y)dy+}@dy:0
5 OX ) OX ) OX 2 Oy

2 £3,...tends to zero .We have

For the first approximation &, &2, &>

Uy (9N(X)+V(x, h(x) ~V(4,0) + Oe) =0 .. (20)
Since the liquid film is symmetric as (Rutayna, 2005), then
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v(x,0)=0 and then equation (20) gives
dUO
ha+v(x,h(x))+0(g) =0 ... (21)

substituting the boundary condition eq.(9) in the equation (21), we get

hdo 9N L o =0
dx

dx
Now, using the decomposition eq.(18) of U, to obtain
du dh
hd—)?+U0&:O (22)
—d(u,.h)=0 ...(23)

Integrate eq.(23) with respect to X, yields the global form of mass
conservation

Q=u,h ..(24)

where Q is a constant representing the volumetric mass flow and u,is,
therefore, the average velocity defined by

1h
U, EEJ'udy ...(25)
0

Consistent with the integral form of the continuity equation (2) and without
loss of generality, it can be assumed that o=1 and therefore equation (24)

gives,
uh=1 ...(26)
which gives the x-component of the velocity in terms of the film thickness.
Now we integrate the momentum equation over the film thickness in

the same manners. The integrals of the non-linear inertia terms in the x-
component of the momentum equation eq. (3) are

tou ; \ v 20 C2

Iu a—dy = I(uou o e +EULU' +eu U U U
X

0 0

+g3u2u'1+52u0u'2+g3u1u‘2+g4u2u‘2+...)dy
=Uu,u', h+0O(g)

h
Restricts to the first order, we get jug_“dy =u,u’,h ..(27)
X
0

Similarly the integral over the film thickness of the right hand side of

equation (3) gives,
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“aaXXd _h 0 2 q
'([—GX y-! —aX(O‘XXO +&0, t& o-xx2+...) y
h h h

oo, oo, i Yol g
[ OTmody o OTmdy 4 o2 [Ty o
5 OX 5 OX 5 OX

= o}, h(x) +0O(e)
h
To the first order approximation, we get j %dy =, h(X) ...(28)
0

and
h

0
A=, (k= () -0, (x0) ++(29)

But o,,(x,0)= 0 due to the symmetry of the flow in liquid film with respect

to the center line and thus eq.(29) reduces to give
" 0o

0nydyzaxy(x, y) ...(30)

Now from equation (14), o,, is given by

0, = (K=0,)

Using eq.(11), the following can be obtained

oy = (K -0, )(=h'(X)) ...(31)
on the free surface y = h(x) , eq.(31) gives
o,y (X, h) = (o, (X, h) — K)N'(X). ... (32)

Therefore the integral of the x-component of the momentum equation
over the film thickness can now be written as:

uush = i[h(x)a;x + o, (X, h)] ...(33)
£
Substituting o, (x,h) from equation (32) into equation (33), we get
oy =y + T, (6, 1)~ K7 NG (34)
Using equation (5), we can express the y-component of equation  (15) by
h
O K00 = 201()),00 00 =0 ... (35)

Now if the magnitude of Xand u are assumed to be O(l), then for a
thin film y is o(h) and h'(x) is also of order h(x), whereh’(x) <<1.Also from
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eq.(10), V is of order of h, and from equation (4) we can find that 0oy

oy

is of order h, and hence we can assume that

o, =-F ... (36)
where p, is a constant representing the ambient pressure .
Now from eq.(5), we have

ov
o, =—PX) +2u— ... (37
yy 8y ( )
Using equation (36) and equation (37), thus give
ov
P(x):POJrzy5 .. (38)
From the continuity equation (2), equation (38) becomes
P(X) = Py —Zy% - (39)
Furthermore, the x-component of the normal stress can now be written as
ou
=—P 2u—
Ox =P+ 2u— (40)

Substituting the expression for P(x) from equation (39) in the equation (40),
we get
ou
=P +4u=
O o tau x (41)
Now by substituting equation (41) for the x-component of the normal

stress tensor in equation (34), we get

UgUp = B A
o= oh 5 h poh ...(42)

Using equation (12) into equation (42), the following can be obtained:
u0u6_4_ﬂu"+iﬂ_4_ﬂﬂ_llh":0 (43)
P ph p h ph
where the term h'*(x) is very small to give K =h"(x).
From eq.(8), we have as x tends to a large positive value (x—w«), the film

approaches a uniform thicknessH , with velocity u, and equation (22) gives

d(uh)=0 or
uh=UH =RJ ...(44)
where g — # is the Kinematics viscosity and is the Reynolds number which
Y2
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is determined by the boundary conditions and is taken to be small, that is
R <<1, ( Reynolds number is very small).
Now from eq.(44), we have

u(x) =% ... (45)

Thus from continuity equation (2), we get

EYAY Dov=n ofu=fRy
RSN
v(X,y) = y ...(46)

h2
Furthermore equations (39) and (45), gives the pressure P(x), where

!

P(x)=P, +2,uRl9% ..(47)

In this section, we obtain the dimensional non-linear equation (43) such
governs the thin liquid films on the vertical guide wires.
2- Dimensional analysis:

We now introduce non-dimensional variables as follows:

h(x) = Hf () ...(48)
and x:% ..(49)

where 771is a non-dimensional variable and f@;) is a non-dimensional
function, x and h(x)are dimensional variables, function respectively and
R is Reynolds number.

Using equation (45), equation (43), reduces to

Ry R’y 4u, pohh"=2h" Poh' 4u R\, ryh',
(h)( hz)p(RS ~ )+ph p( hz)h phh 0
since (9=*#)
Yo
2 Q2 ! ” 12 i 214,12 ’
_R ‘93h +4R32M+P—°h—+4R‘92h AL
h h o h h p h
implies that _R2GN + AR RN — ARGh 4 T2ty _ ey = ...(50)
P P
Now from the transformation eq.(48) and eq.(49), we have
dn dy R
h'(x) = Hf '(n) — an _ R
(x) (n)dx T h
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= HE (7)) =RE ()
hence ... (51)
R2
hH — F f /!(77)
substitute eq.(50) in the equation (49), we get

f —4ff"+4f7° —of °f'— F2ff" =0 ... (52)
where

g=—— 2 and o7y
P FR? pF

So that, in a given liquid, S is determined by H alone and the surface

tension » dependson A and H.

We have to note here that the transformation eq.(48) and eq.(49)
ensures that the domain under consideration is long and thin and that the
films are justified in a domain in which f(;) remains
bounded, The mathematical origins of the terms in eq.(40) are as follows:
Inertia f', Viscosity -4 ff"+4f"? Surface tension — #2ff"” Pressure —af 2’
Now as 7 — o, the boundary conditions require that

f(m)=1+ey(m), <1 ...(53)
The asymptotic condition eq.(8) asx——o with the transformations

eq.(48) and eq.(49) become
f(o)=1, u(w)=1 and v(x)=0Since at x-—>—ow also 75 --wand

h(x) = Hf ()
— () :% at 7 ——o become f(x)—>1
where ¢ is an arbitrary constant and g(«) =0, and the differential equation

(52), then gives

2 472

&9’ —4s9” —4s°9Q” + 45’9’ —asy’ —2as’gqg’
—as’g®g’ - Pe*9'9" +2Ps°gg’'g" + Pe*g*g'g" =0 .. (54)
since &<1,thenwe have &" —0 forn=2,3,4, ...
Thus equation (54) reduces to

49" +(a-1Dg'=0 ... (55)

since =0, S0 equation (55) has a fundamental solution of the form
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g(m) =e™ ... (56)
Substitute (56) in the equation (55), to get
[4m? + (o —1)m]e™ =0 .Since e™ =0

implies that 4m® +(a—-1)m=0 ... (57)
which gives either m=0 and a trivial solution is obtained or
m :1‘7“ ... (58)

The root m in (58) represents a balance among viscosity, inertia
and pressure, the effect of surface tension being negligible. A part from
special circumstances, in which the amplitude of the solution representing a
viscosity-inertia is zero, the inertia term is almost always not negligible as
the film approaches a condition of asymptotic uniform thickness and the
importance of inertia, however, small is the Reynolds number

When f(;) departs from its asymptotic value of unity to an appreciable

extent, the complete differential equation (52) must be satisfied.

Now the variable 7, does not appear explicitly in equation (52), so that
its differential order can be reduced by one by the following
transformations:

c=1®)
9= 1) t - (59)
Thus equation (2.3.5) reduces to
1- 489" +4g —a? — BE?gg’ =0 ...(60)
since g =0
sy 149 —ad? ...(61
9'C€) =35 sy (61)
Furthermore, equation (58) can be written as
1 ,9_9 :
T o488y 4 -0 ...(62
S B (62)
which may be integrated with respectto & to give
BEY° + 20 +89+2c£+2=0 ... (63)

where ¢ is an arbitrary constant.
Now every solution of the original equation whose asymptotic behavior
for large positive value of ¢is given by eq.(53) must pass through the point

(1,0)in (&,9) plane since from (59) &= 1f(n) and g(&)=f'(») and
from eq.(53) we have f()—»1 as n——oothis implies that &1 as

n——ow .
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Furthermore since f'(n) —0, as 7 — —oo, then one can have g) o0
thus equation eq.(61) at (1,0) gives

g'(©) -1 ...(64)
Integrate eq.(64) with respect to &, and after condition g() =0

TOREE ... (65)
where ¢, = “T‘l thus equation (65) becomes

R ...(66)

which is the asymptotic behavior in (£, g)-plane.
Now, substitute equation (66) into equation (63) and pass through (1,0), we
get
¢ =—(a+1) and equation (63) reduces to :

L% +8g + 20 —25(a+1)+2=0
which has the following solution

a0 = —4i\/16—ﬂ§[2;§ ~2a+D)E+2] .(67)
It is clear that the solution has asymptotic behavior as follows

2
g =1 __4_\/16—ﬁ§[2a§ —2(a+DE+2] _ o
lim 9©)=lim 2:* Ve

£—0 -0

But in the case of « =0, there is
1/2
9.(8) | (—4_/16 UHZJ ,
i\ s\ e 5 52~ p

2
p
there is a critical solution g (&) such that gc(f):—% as £-0.

1/2
therefore gc(g)—{ J as ¢ —>oowithin the former class of solutions,

Note that the locus of points at which g'(¢)=0 and from equation (61)
fora-o, there is

5.6)--7 -
One has to note that when « =0 equation (67) has the form

4+ 16425 -1]
9(5)= 5

... (68)
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there is the critical solution g_(£) such that gc(f):—i as £-0

and also gc(g):[Zj as &£,

Some of the solution curves of equation (68) in (z, g)plane are presented in
figures (2, 3, and 4) for different value of » and g, we note that t=¢ in
the following figure.

10 (A+(1E-1410t (145 2115 429 Pn

Figure (2): Solution curves in (&, g)-plane for different values of
a=01,4=01

100 (44161801 (1450 £-101/50 427" )

2
4
o

-1

2

k]

-4
5

Figure (3): Solution curves in (&, g) -plane for different values of
a =001 4=001

149



Journal of Kirkuk University —Scientific Studies , vol.1, No.2 ,2006

100 (-4+(16-1/50

Figure (4): Solution curves in (&, g) -plane for different values of
a=0,/=001

This equation will be solved but without the surface tension term

namely “— g 2ff" =0 and in this case the equation (52) becomes

f'—4ff"+4f"% —of °f'=0 ...(69)
the transformation eq.(59), reduces equation (69) to give

1-4&9"+4g —aé® =0for f'-0 inthis case
' _ 1+4g _agz 70

g(é)——4§ ... (70)
equation (70) is integrated, and after some simplifications, the solution of
equation (70) has the form

1

g@)=—2@@2—a§—§+D. .. (71)

Suppose that p, =0, from equation (69) one gets

f'—4ff"+4£2=0 or

fr_ fredafr?
YTEE .. (72)

Now equation (43) is solved numerically by using matlab program
(William ,2001) with initial conditions given from Brown’s experiment,
namely f(12)=4.6 and f’(12)=0.32 the solution has the form

exp(— 497 &+ 1491)
f (5 =222 P 460" " 115 ... (73)
5 497 1491
— 32+ 529 - -—
[ +529exp(= 50 * 115 )j
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The solution curve of equation (73) is shown in figure (5) in (&, ) plane;
we note that t =& in the figure below.

11431/5 exg-497/460 t+1491/115)/(- 324529 exp-497/460 t+1491118))

Figure (5): solution curve of equation (45).
Some of the solution curves of equation (70) are shown in figure (6) in
(&, g) plane for different value o

Figure (6): Solution curves in (&, g)-plane for different values of

*a=01,°* «a=001,° =0

Conclusion

The dynamics of a free-surface liquid film is very useful in
industrial coating and spinning processes. The solution of the thickness of
the liquid film is determined for different values of the parameter s and
from the solution curves it seems that the thickness or the liquid film
increases as the parameter S increases for a thin liquid film flowing
steadily between two vertical guide wires where we consider two cases.
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In the first case the gravity is taken to be zero and in the second case
when gravity is taken into account, the two cases are considered to see
what the significant effect of gravity is.
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