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Abstract

In this paper we have investigate a new class of conjugate gradient algorithms for
unconstrained non- linear optimization which employ inexact line searches and
designed for general use. Some theoretical results are investigated which ensure the
local convergence of the new proposed algorithms and they compared numerically with
the standard HS-CG algorithm(Hestenes & Stiefel ,1952) using a number of test
functions for the dimensions between 2 to 400 with some promising numerical results .

Introduction

Conjugate Gradient (CG) algorithms form a class of algorithms for
minimizing a general differentiable function f():X€R" \whose gradient
9(X) can be calculated, and based on the following concept of conjugacy:
If Qis a positive definite symmetric N*Nmatrix then the directions
d;,d;. 308y \yherg A #Ognd k =12.34.1 are mutually Q-conjugate if
d/Qd,=0 for =k

The classical algorithm in this category, proposed by Flecteher and

Reeves (Fletcher & Reeves ,1964) based on the following iteration scheme:
Xy =% +A4d, ,1=123..,m

where the scalar %is the smallest positive local minimized of the one-
dimensional problem
mjn f(x, +4d,)

and Yis a search direction generated by the equation:
for 1=1234,.m

dl =—0,
d., =—0.,+ 44,
_ gi];rlgﬂl -
B T (AL-Bayati,1993)
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Conjugate gradient algorithm with inexact searches

The classical CG-algorithm just discussed are well-known to be sensitive
to the exactness of the line searches and this phenomenon can destroy the
global efficiency of these algorithms. The higher the dimension of the
problem, the bigger is the influence of this phenomenon. In order to
improve the local rate of convergence and the efficiency of the classical
CG-algorithm several established algorithms, namely (Nazareth ,1977;
(Dixon L.C.W. ,1975; Nazareth & Nocedal ,1987) multi-step algorithms
have been proposed. They have all shown that such algorithms are able to
generate conjugate directions for quadratic models without performing
exact searches; they will satisfy the quadratic termination property by using
an error vector. Other important algorithms of this type, developed by
(Sloboda ,1980;Sloboda ,1982) retain the quadratic termination property
without using of an error vector.

Corollary (1) :Metras (Ban ,2000) proposed the following relation which
it was suitable for this type of algorithms with complete proof :

1
9”% = Z(gm + 3gi)

General Back ground

In this section we shall give a brief description of Sloboda algorithms
(Sloboda ,1980; Sloboda ,1982) and then we discuss some theoretical
properties of these algorithm.

1- The Sloboda algorithm (1980):

Sloboda [Sloboda ,1980) defines a new generalized conjugate
gradient algorithm for minimizing a strictly convex function of the general
from f () =F(@(x)

The outline of this algorithm is as follows :
Algorithm (Sloboda ,1980)

Step 1-Set %o €R":do =0

Step 2-For i=012,..,n—1Compute X, =X, + A.d,

where % is chosen to satisfy the condition of the line search .
Step 3- Compute

d/ g

“dlg ,
i+

where 9.1 =90 +1/24d;) for general function g.,=wg ,-g, and
2 2

w
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Step 4-Compute the new search direction:

d; =-0i, + 44,
where Biis defined (Hestenes & Stiefel , 1952) by :
le gi+l
b=
yidi . ¥i=0,-0

Step 5- Check for convergence if |9i+1 <¢ then stop, else go to step 6.

Step 6- If i=n+1 then set i =1and go to step 1.Else set i =i+1 and go to step 2.

2-The Sloboda algorithm (1982):

Sloboda (Sloboda ,982) developed an algorithm which generates
conjugate directions with imperfect searches and has the quadratic
termination property without using an error vector. The outline of this
algorithm for general function is as follows:

Algorithm (Sloboda 1982)

A A
Step 1-Set *o:90 =90, do==0o
A
Step 2-For i=012,...,n Compute X;,, = X; + 4, di

A

where i is chosen to satisfy the condition of the line search .

Step 3- If |9l <& , stop , else gotostep5.

Step 4- If i=n+1 thenseti=1 and go to step 1, else compute
A

(9:: -9 9 o

AT

9 9

A
Qi :(gi+1_gi)_

A
g i+1

Step 5- If ¢ gotostep1,elseseti=i+1 compute

A

A A : — 0. T A

di+]_ :_gi+l+wdi
(gi+l_gi)T di

set 1=1+1 and go to step 3.

New CG-Algorithms with inexact line searches
In this section, we have to present a new CG-algorithm with inexact line

searches for minimizing a function () The new algorithm does not
require any error vector and it depends on the vector 9i:defined at the
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X_ 1 *
point "“m,M=123...K and hence a new 9+ which has the property of
9 4
being orthogonal to 9. The gradient vector "= used in this algorithm has
the following property:
New Lemma (4.1)

Let m9. 1=0 +(m_2)9i m=123..K ... (2

2 |+a |+E 2
Then:

1
9.1 za(gnﬁ(m—l)gi) ........................ (3)
proof:
m-—2
_g 1 g + ( ) gi

2 i+E - i+% 2

= (014 90+ 26—
2 i+1 i 2 i i

P P
=50t 5050 -0,

2 i+1 2 i 2 i
mng =01 TMY; — 0;

g =2 (g, +(M-Dg))
— m

I+

Thus we have proved a new relationship to the gradient vector in
Sloboda CG-algorithm.
In particular, if m=4 then we have corollary (1)

1
9.1= Z(gm +30;)

4

which was defined in (Ban, 2000) as special cése from our new formula.

New (1) generalized CG-algorithm which is based on the new
defined gradient vector

Step 1-Let 90 =90,
Step 2-For i=012,...k Compute x;,, =X, +4,d,

Where % is chosen to satisfy the condition of the line search .
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Step 3- If |9l <& , stop , else gotostep 4.
Step 4- If i=n+1 thenseti=1 and gotostep 1, else see

(9 :-9)'g,

gi*+l =(g 1 _gl)_ m T gi .................... (4)
" gi g

<e¢ ,set 1=i1+1 gotostep 2, else set

Step 5- If |

*
gi+l

diy =—0, + 4 d,
g:rlg:rl

*

B =

1
=9, 91" 4,
m

1
where gi+i_gi :E(giﬂ_gi)
then "

T

g

*
1 gi+l
i+—
m

1 i
—(Qi — gi)T d,
m

di+l =—0int

New Lemma (4.2)

g .
Let () pbe a convex function and the vectors %+and "= are

defined as in the new modified (2) CG-algorithm for the points *+and
X

d

1
"m then the following condition holds :

diilgi+l <0 e, (6)
Proof : From eq.(5) we have
g:;iglil
di+1=_gi*+l+ 1 : di
(919",
m
. o 9.1
Let us multiply this direction by ~ ,then we have :
giT+lgi:l
g.T 1Gi =_9.T 19 +m—g.T 14
m “m 7(gi+1_gi)Tdi T
m
gl-iig:—l
:_g.T lgi*+1+ = !

———=—g .4
i (gni —g,)'d, i

m
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1
where E(giﬂ_gi):gni_gi
gL,
__g. gI+ 1-—
i+ 1 1 (giJri gi)le
g.il '_gdei_ngJidu
__g. g|+ .
i+ 1 1 (giJrl gi)TdI
g d;
_—g g|+ —
19 (g - g d
i -g)' Td.
Since 97d(0 and (9,1 ~9) 40 then - 9i 0
" (g”l_gi) d;

Now, to prove that — 9.1 9|+1 <0 | as follows from (4) we have
( 1 g) gl

gi*+1 :(g_ 1 _gi)_ n T g;
" 99
g,

Let us multiplying by “n then:

(_1_)g|

gl—;‘g;—l =g-ir+;(gi+ g )_m—gigi-:i

gi 9

2 (giT+£g| _”gi”Z)
GG 4" 9'g .

2 I+
“n e "

1
m

2

[

| lede’e (@9 o)

= > . g g
loiIf o

oo

3
=
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2
loifle .| ~lol'e's . ~9" 0 9"g , ~[al g .
il
2
||gi||2‘gi+l -9'.0,0/9 ,
il
Again
2
oo, .| 9o .0970 .
T — mil 4 m m
ISt faf lo
Since
_ 1 (m-1)
gi+;_%(gi+1+(m_l)gi) , then gH% SE”gi””JFT”gi” from the Schwartz

equality. This is implies that -- g_T ) gf‘ <0 .Hence we get that 4T 1gf‘ <0

m

The outline of the new (2) CG-algorithm:

Step 1-Set Xo €R".do =0,
Step 2-For i=012,..,n—1 and m=8 Compute X, =X, + A4.d,

Where “ is chosen to satisfy the condition of the line search .
Step 3- Compute

i 9 1
i+—
m

Where g | :%(gi+l+(m—1)gi) for general function 9:+1:Wi9i+g —Gi

Step 4-Compute the new direction:
di,=—0;, + 44,
where #iis defined by :
_ y|T gi+l

h Ydei

Ll S
Step 5- Check for convergence if ||g o ,then stop, else go to step 6.
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Step 6-1f =" 1941 then o to step 1.Else set i =i+1 and go to step 2.

Numerical Results and Conclusions
The comparison involves Five well-known test functions with twenty
different versions (see appendix) with different dimension

(2,4,810,20,40,60,80....,400) ' A the results are obtained using double
precision on the (Pentium (4) computer) using programs written in
FORTRAN.

The compression performance of the algorithms are evaluated by
considering both the total no. of function evaluations and the total no. of
iterations. The stopping criterion is taken to be :

Jo..( 17207

The line search routine employed is the cubic fitting technique,
which uses function values and gradients.

The results are reported in Table (1) in terms of the numbers of
function evaluations, the number of iterations, the results indicate that the
new (2) and m=8, algorithm is more efficient. Than the standard CG-
algorithm. In this a method we use the restarting criterion (Shareef, 2005)
(di+1gi+l >0 or N =K).

The numerical results in Table (1) indicates that the new (2) CG-
algorithm improves the standard HS-CG algorithm in about (8.98)% NOI
and (7.22)% NOF respectively, for this selected test of nonlinear functions.
Note that: We didn't make any numerical computations for new (1) because
it was comparable with Solobodas algorithms numerically but the latter has
a faster rate of convergence.
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Table (1) Comparison of algorithms for 2<N <400

Test function N CG-algorithm new(2),m=8
NOI (NOF) NOI (NOF)
DIXON 2 32 (67) 6 (18)
SHALLO 2 48 (101) 7 (25)
ROSEN 4 27 (72) 27 (72)
NON-DIAGON 4 23 (65) 23 (57)
WOOD 40 48 (101) 45 (95)
WOLFE 40 47 (95) 47 (95)
ROSEN 60 22 (55) 21 (54)
CUBIC 60 11 (32) 11 (32)
POWELL 80 84 (193) 85 (202)
WOLFE 80 49 (99) 49 (99)
NON-DIAGON 100 25 (62) 22 (55)
WOOD 100 85 (175) 74 (152)
POWELL 100 113 (264) 114 (275)
SHALLO 200 6 (17) 6 (19)
WOOD 200 85 (175) 74 (152)
WOLFE 200 51 (103) 51 (103)
POWELL 400 415 (871) 402 (860)
WOOD 400 86 (176) 75 (154)
CUBIC 400 12 (35) 12 (35)
WOLFE 400 54 (109) 54 (109)
TOTAL 1323 (2867) 1205 (2663)

Percentage performance of new(2) algorithm against the standard
CG-algorithm

Tools Standard -CG NEW
NOI 100 91.02
NOF 100 92.88
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Appendix

1.Cubic function :
n/2

f(x)= Z(lOO(XZi —X50)" + (L= X54)%)

Starting point:(-1.2,1,-1.2,1,...)"
2.Non —diagonal function:
n/2

f(x) =) (100(%; - X7)? + (L-x,)?)

Starting point:(-1,...)"
3.Rosen brock function:
n/2

f(x)= Z(lOO(XZi —X50)" + (= X54)%)

Starting point: (-1.21,-1.2.1,...)"
4.Generalized powell function :
n/4

f(x) = Z(X4i—3 =10X,5)® +5(Xyig = X1 )* + (Kyig = 2X4) " +10(X51 =X )* + (Kyip = 2% 3 = X)°)

i=1
Starting point: (3101,...)"
5.Shallo w function :
n/2

f(x)= Z(Xzzi—l - X2i)2 +(1- X2i71)2

Starting point: (-2,-2,..)"
6.Dixon function:

[0 = M=)+ A=) + 3 (05 =x,,)°

Starting point:(-1..)"
7.Welfe function

n-1
F(X)= (=X, 8= % /2)+ 2%, =% + D Xy =X, B= X B= % /2) + 2%, 1) + (X, — X, (3%, /2-1)*

i=1
Starting point:(-1...)"
8.Wood function :
n/4

f(x)= 2100(X4i72 X 3) "+ (L= Xy 5)* +90(Xy — X5 4)* + (L= X5 ,)* +1.0
i1

Starting point :(-3,-1,-3,-1...)"

106



Journal of Kirkuk University —Scientific Studies , vol.1, No.2 ,2006

PHA s gisad B 38 A guall Baa cla ) A

Foma gabe anly 9 FFaeaadijle Llaw g F bl guig (ube
g8 S daala —aglal) LlE** L gal) daaly —cbualy ) g clualal) o gle 4l

LAY

Al B! 8 A i) clalad) el s e s i ) Gokal 5 Call 1 b
GOl S5 Ak ) e cyhel Lol AU G Qb e sy had Jleiuly

A A pe Sl ) Al o2a 45 Hlae ad LS da i) 3aaall cilie ) sall 2 gl
Slo dsanll pa £o0 ) Yoe 250 alalys 40, J)sall (e sae dladsuly(Hestenes & Stiefel)

107



