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Abstract 

 
         In this paper we have investigate a new class of  conjugate gradient algorithms for 

unconstrained non- linear optimization which employ inexact line searches and 

designed for general use. Some theoretical results are investigated which ensure the 

local convergence of the new proposed algorithms and they compared numerically with 

the standard HS-CG algorithm(Hestenes & Stiefel ,1952) using a number of test 

functions for the dimensions  between  2 to 400 with some promising numerical results .                                                 

 

Introduction 
    Conjugate Gradient (CG) algorithms form a class of algorithms for 

minimizing a general differentiable function ,),( nRxxf  whose gradient 
)(xg  can be calculated, and based on the following concept of conjugacy: 

If Q is a positive definite symmetric nn* matrix then the directions 

kdddd ,...,,, 321  where 0kd and, ,,...,4,3,2,1 nk   are mutually Q -conjugate if 

kiforQdd i

T

k  0  
    The classical algorithm in this category, proposed by Flecteher and 

Reeves (Fletcher & Reeves ,1964) based on the following iteration scheme: 
midxx iiii ,...,3,2,1,1    

where the scalar i is the smallest positive local minimized of the one-

dimensional problem 
)(min iii dxf 




 

and id is a search direction generated by the equation: 
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Conjugate gradient algorithm with inexact searches 
    The classical CG-algorithm just discussed are well-known to be sensitive 

to the exactness of the line searches and this phenomenon can destroy the 

global efficiency of these algorithms. The higher the dimension of the 

problem, the bigger is the influence of this phenomenon. In order to 

improve the local rate of convergence and the efficiency of the classical 

CG-algorithm several established algorithms, namely (Nazareth ,1977; 

(Dixon L.C.W. ,1975; Nazareth  & Nocedal ,1987) multi-step algorithms 

have been proposed. They have all shown that such algorithms are able to 

generate conjugate directions for quadratic models without performing 

exact searches; they will satisfy the quadratic termination property by using 

an error vector. Other important algorithms of this type, developed by 

(Sloboda ,1980;Sloboda ,1982) retain the quadratic termination property 

without using of an error vector. 

Corollary (1) :Metras (Ban ,2000)  proposed the following relation which 

it was suitable for this type of algorithms with complete proof :                     

.)3(
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General Back ground 
    In this section we shall give a brief description of  Sloboda algorithms 

(Sloboda ,1980; Sloboda ,1982) and  then we discuss some theoretical 

properties of these algorithm. 

1- The Sloboda algorithm (1980): 

Sloboda [Sloboda ,1980) defines a new generalized conjugate  

gradient algorithm for minimizing a strictly convex  function of the general 

from ))(()( xqFxf   

The outline of this algorithm is as follows : 

Algorithm (Sloboda ,1980) 

Step 1-Set 000 , gdRx n  . 

Step 2-For   iiii dxxComputeni  11,...,2,1,0  

 where i  is chosen to satisfy the condition of the line search . 

Step 3- Compute  
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Step 4-Compute the new search direction: 

                    iiii dgd   11       

 where i is defined (Hestenes & Stiefel , 1952) by : 

           i

T

i

i

T

i

i
dy

gy 1

; iii ggy  1    

 

Step 5- Check for convergence if                     ,then stop, else go to step 6. 

 

Step 6- If 1 ni ,then set 1i and go to step 1.Else set 1 ii ,and go to step 2. 

2-The Sloboda algorithm (1982): 

Sloboda (Sloboda ,982) developed an algorithm which generates 

conjugate directions with imperfect searches and has the quadratic 

termination property without using an error vector. The outline of this 

algorithm for general function is as follows:  

Algorithm (Sloboda 1982) 

Step 1-Set 00000 ,, gdggx 


. 

Step 2-For   iiii dxxComputeni


  1,...,2,1,0  

 where i  is chosen to satisfy the condition of the line search . 

Step 3- If  
1ig

  , stop , else  go to step 5 . 

Step 4-  If 1 ni  ,then set 1i , and go to step 1 , else compute  

 

                                      

, go to step 1 , else set 1 ii  ,compute                                   Step 5- If   
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set 1 ii  and go to step 3 . 

 

 New CG-Algorithms  with inexact line searches 
In this section, we have to present a new CG-algorithm with inexact line 

searches for minimizing a function )(xf .The new algorithm does not 

require any error vector and it depends on the vector 1ig defined at the 



 99 

Journal of Kirkuk University –Scientific Studies , vol.1, No.2 ,2006 
 

 

point m
i

x 1


, ,,...,3,2,1 km  and hence a new 
*

1ig  which has the property of 

being orthogonal to ig .The gradient vector m
i

g 1


used in this algorithm has 

the following property: 

New Lemma (4.1) 
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     Thus we have proved a new relationship to the gradient vector in 

Sloboda CG-algorithm. 

In particular, if  4m  then we have corollary  (1)    
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which was defined in (Ban, 2000) as special case from our new formula. 

 

New (1) generalized CG-algorithm which is based on the new 

defined gradient vector 

Step 1-Let 00 gd  . 

Step 2-For  iiii dxxComputeki  1,...,2,1,0  

                    Where i  is chosen to satisfy the condition of the line search . 
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Step 3- If  
1ig

  , stop , else  go to step 4 . 

Step 4-  If 1 ni  ,then set 1i , and go to step 1 , else see  
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New Lemma (4.2) 

Let )(xf be a convex function and the vectors 1id and m
i

g 1


 are 

defined as in the new modified (2) CG-algorithm for the points 1ix and 

m
i

x 1


,then the following condition holds :     

)6..(..........011 




m
i

T

i gd

 
Proof : From eq.(5) we have 

i

i

T

ii

i

T

m
i

ii d

dgg
m

gg

gd

)(
1

1

*

11

*

11












 

Let us multiply this direction by 
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The outline of the  new (2) CG-algorithm: 

Step 1-Set 000 , gdRx n  . 

Step 2-For   iiii dxxComputemandni  181,...,2,1,0  

 Where i  is chosen to satisfy the condition of the line search . 

Step 3- Compute  
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Step 4-Compute the new direction: 
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Step 5- Check for convergence if              ,then stop, else go to step 6. 
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Step 6-If 
 1igorni

,then go to step 1.Else set 1 ii ,and go to step 2. 

 

Numerical Results and Conclusions 

 The comparison involves Five well-known test functions with twenty 

different versions (see appendix) with different dimension 
)400,...,80,60,40,20,10,8,4,2( . All the results are obtained using double 

precision on the (Pentium (4) computer) using programs written in 

FORTRAN. 

 The compression performance of the algorithms are evaluated by 

considering both the total no. of function evaluations and the total no. of 

iterations. The stopping criterion is taken to be : 

                                                        
5

1 10*1 

ig
 

 The line search routine employed is the cubic fitting technique, 

which uses function values and gradients. 

 The results are reported in Table (1) in terms of the numbers of 

function evaluations,  the number of iterations, the results indicate that the 

new (2) and m=8, algorithm is more efficient. Than the standard CG-

algorithm. In this a method we use the restarting criterion (Shareef, 2005) 

  

     The numerical results in Table (1) indicates that the new (2) CG-

algorithm improves the standard HS-CG algorithm in about  (8.98)% NOI 

and (7.22)%  NOF respectively, for this selected test of nonlinear functions. 

Note that: We didn't make any numerical computations for new (1) because 

it was comparable with Solobodas algorithms numerically but the latter has 

a faster rate of convergence. 
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Table (1) Comparison of algorithms for  4002  N  

Test function N CG-algorithm 

NOI    (NOF) 

new(2),m=8 

NOI    (NOF) 

DIXON 2 32             (67) 6             (18) 

SHALLO 2 48              (101) 7             (25) 

ROSEN 4 27              (72) 27              (72) 

NON-DIAGON 4 23              (65) 23             (57) 

WOOD 40 48             (101) 45             (95) 

WOLFE 40 47              (95) 47              (95) 

ROSEN 60 22              (55) 21              (54) 

CUBIC 60 11              (32) 11              (32) 

POWELL 80 84             (193) 85             (202) 

WOLFE 80 49              (99) 49            (99) 

NON-DIAGON 100 25             (62) 22            (55) 

WOOD 100 85              (175) 74            (152) 

POWELL 100 113            (264) 114             (275) 

SHALLO 200 6              (17) 6             (19) 

WOOD 200 85              (175) 74              (152) 

WOLFE 200 51              (103) 51              (103) 

POWELL 400 415            (871) 402             (860) 

WOOD 400 86              (176) 75             (154) 

CUBIC 400 12              (35) 12              (35) 

WOLFE 400 54              (109) 54              (109) 

TOTAL  1323        (2867) 1205         (2663) 

 

Percentage performance of new(2) algorithm against the standard  

CG-algorithm 

 
Tools Standard –CG NEW 

NOI 100 91.02 

NOF 100 92.88 
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 تربيعيغير  في نموذج للتدرج المترافق جديدة خوارزميات
 

 

*باسم عباس حسن  و  **سدابة عارف محمد   و  *عباس يونس البياتي  
جامعة كركوك -كلية العلوم** جامعة الموصل    -كلية علوم الحاسبات والرياضيات*  

 

 الخلاصة
 

في هذا البحث تم التطرق إلى صنف جديد من خوارزميات الاتجاهات المترافقة في الأمثلة اللاخطية   
تؤكد التقارب باستعمال خط بحث غير تام وصممت للاستخدام العام . أعطيت بعض النتائج النظرية التي 

 خوارزمية مع الخوارزميات  الجديدة المقترحة .كما تمت مقارنة هذه اتالموضعي للخوارزمي
(Hestenes & Stiefel)مع الحصول على   044الى 2عدد من الدوال ألاختباريه وبأبعاد تتراوح مناستخدام ب 

  مشجعة.نتائج 
 

 


