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Abstract 
 

    In this paper, we have presented a numerical algorithm for the step-size estimation for 

minimization problems. Global convergence results are derived for descent algorithms 

in which the line search step is replaced by a step whose length is determined by step-

size estimation formula. Numerical results show that the new estimation step-size 

required less storage and greatly speeded up the convergence of the gradient algorithm 

for large-scale unconstrained optimization problems. Also the new proposed algorithm 

seems to converge better and superior to other similar algorithms in many situations. 

 

Introduction 

    Let n be an n-dimensional Euclidean space and let nf :  be 

continuously differentiable function. Line-search methods for solving the 

unconstrained minimization problem  

                         Min nx                              )( xf ,                                         (1)  

have the form defined by the equation  

,...3,2,1                                     1  kdxx kkkk                                                 (2) 

where nx 1 is an initial point , kd is a descent direction of )(xf at kx ,and 

k  is the step-size. 

        Let kx be the current iterative point ,...3,2,1k and x be a stationary 

point which satisfies 0)(  xf  we denoted the gradient )( kxf  by kg , the 

function value )( kxf  by f  choosing the search direction kd and 

determining the step-size k  along the search direction at each iteration are 

the main tasks in line search methods. The search direction kd is generally 

required to satisfy:          0

kk dg                                                                (3) 

which guarantees that kd is a descent direction of )(xf at kx  .In order to  

guarantee the global convergence, we required some times that kd satisfies 

the sufficient descent condition  

                                                                                                2

kkk gcdg 
(4) 
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where 0c is a constant .Moreover, we need to choose kd to satisfy the 

angle property 

0).(
,cos 






kk

kk
kk dg

dg
dg                                                                 (5) 

where ]1,0(0  is a constant and kk dg , denotes the angle between the 

vectors kg and kd . 

     The commonly used line search rules are as follows 

see(Armijo,1966;Fiacco&Cormick,1990;Yuan,2006 and Yaun&Sun,1997): 

(a) Minimization Rule: At each iteration, k  is selected so that 

   )(min)(
0

kkkkk dxfdxf 





                                                               (6)      

(b) Approximate Minimization Rule:At each iteration, k  is selected so that 

     0 , 0)(min    kkkk ddxg                                                      (7) 

(c) Armijo Rule: Set scalar  ,0,, LSk with 

      2

k

kk
k

dL

dg
S


   , )2/1,0(),1,0(   . 

     Let k be the larges  in  ,...,, 2

kkk sss  such that  

    kkkkk dgdxff   )(                                                                    (8) 

(d) Limited minimization Rule: set  2

k

kk
k

dL

dg
S


 where k is defined 

by  

        )(min)(
],0[

kk
s

kkk dxfdxf
k







                                                             (9)              

         where 0L  is a constant 

(e) Goldsten Rule:A fixed scalar )2/1,0( is selected and k is chosen to 

satisfy  

     





 


  1
)(

kkk

kkkk

dg

fdxf                                                    (10) 

    It is possible to show that, if f is bounded below, there exists an 

interval of step-size k  for which the relation above is satisfied, there 

are fairly simple algorithms for finding such a step-size thorough a finite 

number of arithmetic operations. 

(f) Strong Wolfe Rule: k is chosen to satisfy simultaneously  

    kkkkkk dgdxff   )(                                                               (11) 

     kkkkk dgddxg    )(                                                                   (12) 

       where   and  are some scalars with )2/1,0(  and )1,(    
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    (g) Wolfe Rule: k is chosen to satisfy (11) and  

         kkkkk dgddxg    )(                                                                        (13) 

      some important global convergent result for various method using the 

above mentioned specific line-search procedures have been given 

(Armijo,1966;More,Garbow&Hilstrom,1981) .In fact, the above mentioned 

line-search methods are monotone descent for unconstrained optimization 

see (Fiacco&McCormick,1990;Goldstein&Price,1967). Non monotone 

line-search methods have been investigated also by many authors see 

(More,Garbow&Hilstrom,1981;Nocedal&Wright,1999) is a non monotone 

descent method which is an efficient algorithm for solving some special 

problems. Shi & Shen (Shi & Shen ,2006) described some descent 

algorithm without line-search. 

        In this paper we describe a new algorithm without line-search. The 

basic idea is to estimate the line-search step which based on a known 

parameter. The algorithm is compared with similar published algorithms 

that may be more effective than Shi & Shen algorithm (Shi & Shen ,2006).  

   

1. Shi & Shen Algorithm without line-search (SSW) 
          Shi & Shen assumed that some property holds to find descent 

algorithm without line-search    

 (H1) )(xf is bound below denoted that  

)}()({)( 00 xfxfxxL n                                                                          (14) 

(H2) the gradient )(xg is uniformly continuous on an open convex set B that 

contains 0L .Some times further assumed that the following condition holds. 

(H3)the gradient )(xg is lipschitc continuous on an open convex set B that 

contains the level set )( 0xL ,i.e ,there exists L such that 

yxLygxg  )()(  , Byx  ,                                                                  (15) 

Obviously, (H3) implies (H2) 

1.1. Outlines of the SSW Algorithm without line search : 

     Corresponding SSW gradient descent algorithm without line-search may 

be listed as follows: 

Step1: choose an initial point nx 0 , )2,0(v and  00  LM set 1K . 

Step2: if 0kg  then stop! Go to step3. 

Step3: Estimate  MLLk ,0  

Step4: k

k

kk g
L

v
xx 1 ; 
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Step5: set 1 kk  and go to step2 

The following formula for 
k

k
L

v
  )1( k  

1.





















 2

1

11
1,max,min(

k

kk
kk

V

Vy
LML                                                                  (16) 

2.























11

2

1

1,max,min(
kk

k

kk
Vy

y
LML                                                                  (17) 

3.  ),max,min(
1

1

1



















k

k

kk
V

y
LML                                                                  (18) 

4.
2

1

2

1

2

111 )(2
,min(



 


kk

kkkk

k

g

gff
ML




                                                          (19) 

where 11   kkk xxV , 11   kkk ggy  and . denotes Euclidean norm. 

1.2. Some properties of the SSW Algorithm: 

     The following lemma can be found in (Nocedal,1992). 

 Lemma1.2.1: (mean value theorem).Suppose that the objective function 

)(xf  is continuously differentiable on an open continuously differentiable 

on an open convex set B , then 

)()(

1

0

dtdtxgdfdxf kkkkkkk                                                              (20) 

where Bdxx kkk , and n

kd  further, if )(xf is twice continuously 

differentiable on B then 

dtdtxfgdxg r

kkkkkk  )()(

1

0

2

                                                         (21) 

and  

dtddtxfdtdgfdxf kkkkkkkkkk   

1

0

22 )()1()(                               (22) 

1.3. Convergence of the SSW Algorithm: 
 Theorem2.3.1          

       If (H1) and (H2) hold SSW algorithm generates an infinite sequence 

}{ kx and )1,
2

(
v

 , LLk    




0
2

1

k kL
                                                                                                 (23) 

Then 
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0inflim 


k
k

g                                                                               (24)       

For the proof see (Shi&Shen,2006) 

                                    □ 

          In order to analyze the convergence rate of the algorithm, used of 

assumption (H4) below 

(H4)  xxk }{  )(),(, xfk   is twice continuously differentiable on 

),( xN and )(2  xf is positive definite. 

Lemma1.3.1: Assume that (H4) holds. Then (H1),(H3) and (H2) hold 

automatically for k  sufficiently large, and there exists Mm 0 and  0  

such that  
222

)( yMyxfyym                                                                            (25) 

),(,,
2

1
)()(

2

1 22

  xNyxxxMxfxfxxm                               (26) 

),(,,)())()((
22

  xNyxyxmyxygxgyxM                            (27) 

and thus     

),(,)()(
22

  xNxxxmxxxgxxM                                       (28) 

and 

   ),(,,)()(  xNyxyxygxg                                                           (29) 

see [14 ],[15] 

lemma1.3.2: If (H1) and (H3) hold and SSW Algorithm with MLk  and 

ML  generates an infinite sequence }{ kx , then there exists 0 such 

that  

kgff kkk   ,
2

1 
                                                                                    (30) 

see [9]. 

 

2. Anew Proposed Algorithm without line-search (NSSW) 
          In this section we propose a new algorithm without line-search based 

on estimate step-size. We assume that (H1), (H2), (H3) holds we shall 

implicitly assume that the constant L in (H3) is easy to estimate. We must 

estimate kL  at each iteration. Certainly if the Lipschitz constant L of the 

gradient of objective function is known apriore, then we can take LLk   in 

the algorithm. We estimate Lipschitz constant L  and find an approximation 

kL to L we defined  
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









 































 2

1

111

1

1

1

11

11

2

1

))()(()]()([2
,

)(
,,,

k

kkkkk

k

kkk

k

kk

kk

k

kk

V

Vxgxgxfxf

V

ggg

y

Vy

Vy

V
LL     (31)                                                                              

where 1111 ,   kkkkkk ggyxxV  

2.1. Outlines of the NSSW Algorithm without line search : 

The outliers of the new algorithm without line-search may be given as follows: 

Step1: choose an initial point nx 0 , 8.0v and  810M set 1K . 

Step2: if 0kg  then stop! Go to step3. 

Step3: Estimate  MLLk ,0 , 810,8.0  Mv  

Step4: k

k

kk g
L

v
xx 1 ; 

Step5: if 1 kk ff  then  go to step 6 else go to step7 

Step 6: kV

kV )05.0(  go to step 7 

Step7: set 1 kk  and if 0
kL

v
 then let 1

kL

v
  and go to step2 

The formulae for )1(,  k
L

v

k

k  

























 































 2

1

111

1

1

1

11

11

2

1

))()(()]()([2
,

)(
,,,max,min

k

kkkkk

k

kkk

k

kk

kk

k

kk

V

Vxgxgxfxf

V

ggg

y

Vy

Vy

V
LML     (32) 

2.2. Some Theoretical properties of the NSSW Algorithm: 

    The new formulae are useful because they arise from the classical quasi-

Newton condition(Nocedal,1999) and from Barzilai and Borweins 

idea(Barziliai&Borwein,1988) .      

     Some recent observations on Barzilai and Borweins method are very 

exciting (Fletcher,2001;Raydoan,1997;Shi&Shen,2006;Diao&Liao,2002).  

      Remark: the above theorem shows that we can set a large kL  and small 

v  to guarantee the global convergence. 

However, if kL is very large then k  will be very small and will slow the 

convergence rate of descent methods. 

Theorem2.2.1 Assume that the hypotheses of theorem 1.2.1 hold. Denote 

the exact step by 

k  (including exact line search rule (a) and (b)) then 

            
kk

v



                                                                                         (33) 

Proof: Where kL  defined (1) 
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
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           for the line search rules (a)and (b),(H3)and Cauchy-Schwartz 

inequality, we have 

        
2

1

1

2

             

)(             

.

k

kkk

kkkkk

g

ggg

ggggL















 

Therefore 

                
L

k

1
  

noting that LLk   we have 

                 
vvL

v

LL
k

kk

k





  1

 

In order to analyze the convergence rate of the new algorithm we use 

assumption (H4) and lemma (2.2.1) hold. 

Lemma2.2.1: If (H1) and (H3) hold and NSSW Algorithm with MLk  and 

ML  generates an infinite sequence }{ kx , then there exists 0 such that  

kgff kkk   ,
2

1                                                                                      (34)    

Proof: By lemma2.2.1 and (H3) we have 
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Taking kk gd   and 
kL

v
 in the above formula,we have 
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thus 

  

2

2

2

2

2
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
 

we obtain the desired result. 

 

3. Numerical results 
    All the two algorithms described in this paper were coded in double 

precision newly-program FORTRAN programmed. 

         In comparisons of algorithms the function evaluation is normally 

assumed to be the most costly factor in iteration hence, the cost of solving a 

problem is normally presented in terms of the number of functions 

evaluation (NOF), is valuable in comparing similar algorithms, and is also 

presented here. The actual convergence criterion employed was 
5

1 101 

 kg for all two algorithms, fourteen well-known test functions 

(Appendices 1 and 2) see (More,Garbow&Hillstrom,1981) and with 

dimensionality ranging (12-10000) are employed in the comparison. 

         The complete set of results is given in Tables (1), (2) while Table (3) 

gives the percentage of NOF for each function was solved using the 

following algorithms; 

1-Shi & Shen Algorithm without line-search (SSW) 

2- The New Algorithm without line-search (NSSW) 
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    The important thing is that the new algorithm without line-search needs 

fewer evaluations of )(xf and )(xg  than SSW algorithm. We can see that 

other algorithm may fail in some case while the new algorithm without 

line-search always converges. Moreover numerical experiments also show 

that the new algorithm always convergence stably.  

        It is clear from the Tables (1), (2) of the numerical results that the new 

proposed algorithm without line-search is very efficient and superior on the 

standard SSW algorithm namely there are  approximately about (94 -95 ) 

improves of NOF for all dimensions . 

 

 

 
 

 

 

 

 

 

Table (1):Comparison between the NSSW algorithm and SSW algorithms 

using different value of 12< N <4320 for the 1
st
 class of test functions. 

Table (2):Comparison between the NSSW algorithm and SSW algorithms 

using different value of of 12< N <4320 for the 2
nd

 class of test function   
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Table(3): Percentage performance of the NSSW algorithm against SSW 

algorithm  for 100% in NOF. 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 
           In this Paper, a new step-size estimation numerical algorithm 

without line search is proposed .Global convergence is derived for gradient 

method in which the line-search is replaced by a step-size estimation whose 

length is determined by a formula. Where the gradient method with 

kL defined by (32) to construct gradient methods without line-search be the 

best algorithm for test problems. 

          As a result, we should choose carefully kL in practical computations 

in order to satisfy both global convergence and the fast convergence rate. 

Our numerical results supports our claim and also indicate that the new 

algorithm without line-search may be converge faster and is more efficient 

than SSW algorithm in many situations. 
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Appendix1        

   All the test functions used in Table (1) for this paper are from general 

literature:   

1. Generalized Recip Function: 

 






3/

1
)2(

2

19

2

13 2
313

2
3)5()(

n

i
xx

x

ii
ii

ixxxf , .]1.,5.,2.,...,1.,5.,2[0 x . 

2. Generalized Edger Function: 
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3. Generalized quartic Function GQ1 
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4. Generalized Quartic Function GQ2: 
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7Generalized Shallow Function: 
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Appendix2         

   All the test functions used in Table (2) for this paper are from general 

literature:   

1. Generalized Dixon function: 
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2. Tridiagonal Perturbed Quadratic Function: 
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3. Perturbed Penalty Function: 
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4. Quadratic Function QF2: 
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5. Dqudrtic Function (CUTE): 
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6. Generalized Strail Function:  
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7. Extended Block-Diagonal BD1 Function: 
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  اللاخطية دارخوارزمية الانح في لبحثا لخطتخمين جديد 
 

 **الانسة ايفان صبحي لطيفو     * عباس يونس البياتي      

 جامعة الموصل ـ كلية علوم الحاسبات والرياضيات*
 جامعة صلاح الدين/اربيل ـ كلية التربية العلمية**

 
 ةصلاخال

 
تم استنتاج  .مسائل الامثليةفي  تخمين خط البحث خوارزمية عددية ل استحداثفي هذا البحـث تم           

,حيث تم استبدال خط البحث بأيجاد خطوة الانحدار خوارزمية خط بحث ل التقارب الامثل من خلال اشتقاق 
 .خمنه لها م

خوارزميات  فيتقارب اكبر للخوارزمية المقدمة كفؤه و يحتاج الى خزن اقل ولسرعة النتائج العملية        
ذات تقارب أفضل  هان الخوارزمية الجديد تم اثباتالتدرج ذات القياس العالي في الامثلية اللاخطية . وكذلك 

   . مثل هذه الحالاتمقارنة بالخوارزميات المماثلة في 


