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Abstract

In this paper, we have presented a numerical algorithm for the step-size estimation for
minimization problems. Global convergence results are derived for descent algorithms
in which the line search step is replaced by a step whose length is determined by step-
size estimation formula. Numerical results show that the new estimation step-size
required less storage and greatly speeded up the convergence of the gradient algorithm
for large-scale unconstrained optimization problems. Also the new proposed algorithm
seems to converge better and superior to other similar algorithms in many situations.

Introduction
Let ®"be an n-dimensional Euclidean space and let f:®" >R be

continuously differentiable function. Line-search methods for solving the
unconstrained minimization problem

Min f(x) XxeR", (1)
have the form defined by the equation
X, =X+, d, k=123,.. (2)
where x, eR"is an initial point ,d, is a descent direction of f(x)at x,,and
a, 1S the step-size.

Let x, be the current iterative point k=1,23,...and x*be a stationary
point which satisfies vf(x*)=0 we denoted the gradient vf (x,) by g,, the
function value f(x,) by f* choosing the search directiond, and
determining the step-size «, along the search direction at each iteration are
the main tasks in line search methods. The search direction d, is generally
required to satisfy: g d, <0 (3)
which guarantees that d, is a descent direction of f(x)at x, .In order to
guarantee the global convergence, we required some times that d, satisfies
the sufficient descent condition

g¢d, <—clg,| (4)
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where c¢>0is a constant .Moreover, we need to choose d, to satisfy the
angle property

_ ’d =_ngdk > 5
o500 )= ol p ©)

wheren, (01]is a constant and (-g,.d,)denotes the angle between the
vectors —g,and d, .

The commonly wused Iline search rules are as follows
see(Armijo,1966;Fiacco&Cormick,1990;Yuan,2006 and Yaun&Sun,1997):
(@) Minimization Rule: At each iteration, «, is selected so that

f (% + e d ) =min f(x, +ad,) (6)
(b) Approximate Minimization Rule:At each iteration, «, is selected so that
&, =minlalg(x, +ad,)"d, =0,a>0] (7)
(c) Armijo Rule: Set scalar S, , 5,L> 0,0 with
=9 ™ Be(0D),0(01/2).
Let a, be the larges ain {s,, s, %,....jsuch that
f.—f(x, +ad,)>-ong,d, (8)

(d) Limited minimization Rule: set S, :_gg%nd ||2)where a, 1S defined
k

by
f(xk"'akdk):arer[‘()i";‘k]f(Xk"'adk) (9)

where L>0 iS a constant

(e) Goldsten Rule:A fixed scalar o <(0,1/2)is selected and «,is chosen to
satisfy

O'S[f(xk—irakdk)_fg/ 1, <l-o (10)
9, d,

It is possible to show that, if fis bounded below, there exists an
interval of step-size «, for which the relation above is satisfied, there

are fairly simple algorithms for finding such a step-size thorough a finite
number of arithmetic operations.
(f) Strong Wolfe Rule: «, is chosen to satisfy simultaneously

fo — £ (% +0‘dk)2_mkngdk (11)
l9(x +od,)"d,| <o/ d, (12)
where o and gare some scalars with o <(0,1/2) and g e (o))
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(g) Wolfe Rule: «,is chosen to satisfy (11) and
g(x, +od,)"d, > fg,d, (13)
some important global convergent result for various method using the
above mentioned specific line-search procedures have been given
(Armijo,1966;More,Garbow&Hilstrom,1981) .In fact, the above mentioned
line-search methods are monotone descent for unconstrained optimization
see (Fiacco&McCormick,1990;Goldstein&Price,1967). Non monotone
line-search methods have been investigated also by many authors see
(More,Garbow&Hilstrom,1981;Nocedal&Wright,1999) is a non monotone
descent method which is an efficient algorithm for solving some special
problems. Shi & Shen (Shi & Shen ,2006) described some descent
algorithm without line-search.

In this paper we describe a new algorithm without line-search. The
basic idea is to estimate the line-search step which based on a known
parameter. The algorithm is compared with similar published algorithms
that may be more effective than Shi & Shen algorithm (Shi & Shen ,2006).

1. Shi & Shen Algorithm without line-search (SSW)

Shi & Shen assumed that some property holds to find descent
algorithm without line-search
(H1) f(x)is bound below denoted that

L(%,) ={x e R"|f (x) < f(X,)} (14)
(H2) the gradient g(x) is uniformly continuous on an open convex set B that
contains L,.Some times further assumed that the following condition holds.
(H3)the gradient g(x)is lipschitc continuous on an open convex set B that
contains the level set L(x,),i.e ,there exists L such that
la)—g()|<Ljx~y| , vxyeB (15)
Obviously, (H3) implies (H2)
1.1. Outlines of the SSW Algorithm without line search :

Corresponding SSW gradient descent algorithm without line-search may
be listed as follows:
Stepl: choose an initial point x, e |R",ve(0,2)and M >L,>0set K =1.
Step2: if |g,[|=0 then stop! Go to step3.
Step3: Estimate L, e[L,,M]

Step4: x,., =X, —ngk :

k
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Step5: setk =k +1 and go to step2

The following formula for «, :Ll (k >1)
k

1.L, =min(M ,max{Lkl,y“—szl} (16)
Ml
2.L, =min(M,max Lkl,”)T/k—1||2 (17)
YieVia
3. L, =min(M ,max{Lkl,”y“”}) (18)
Meal
2
4. L, =min(M, 2(f, - fk21 +ak12||gkl|| ) (19)
ak—lngk—l”

where V, , =%, =X, Y1 =9, —9,, and || denotes Euclidean norm.

1.2. Some properties of the SSW Algorithm:

The following lemma can be found in (Nocedal,1992).
Lemmal.2.1: (mean value theorem).Suppose that the objective function
f(x) is continuously differentiable on an open continuously differentiable
on an open convex setB, then

1
f (% +do) - f =a[d]g(x, +tad,dt) (20)
0

where x,,x, +ad, eBand d, eR"further, if f(x)is twice continuously
differentiable on Bthen

1
g(x, +ad,)—g, =a[V*f (x, +tad, )aydt (21)
0
and
1
f(x, +ed,)—f, =ag/d, +a2.|‘(1—t)dkTV2f(xk +tod, )d, dt (22)
0

1.3. Convergence of the SSW Algorithm:
Theorem2.3.1
If (H1) and (H2) hold SSW algorithm generates an infinite sequence

{x}Yandpe (%,1) , L= pl

i L = 400 (23)

T2
o Li

Then
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lim infla,] =0 (24)

For the proof see (Shi&Shen,2006)
(]
In order to analyze the convergence rate of the algorithm, used of
assumption (H4) below
(H4) {x}—>x" ,(k—>x),f(x) is twice continuously differentiable on

N(x",e)and V?f(x")is positive definite.

Lemmal.3.1: Assume that (H4) holds. Then (H1),(H3) and (H2) hold
automatically for k sufficiently large, and there exists 0<m’'<M’'and ¢, <¢
such that

mly|" <y'v* £ )y <My]" (25)

x—x*HZ,Vx,ye N(x",&) (26)

%m'Hx—x*Hz < f(x)- f(x*)s%M’

x—y||2,VX,ye N (X, &) (27)

M=y = (g()—g(y)" (x=y)=m’
and thus
M’ x—x*H2 >g(X) " (x=x")>m'
and

la()—g)] <[x=y]. %,y e N(x",¢) (29)
see [14 ],[15]
lemmal.3.2: If (H1) and (H3) hold and SSW Algorithm with L <M and

L <M generates an infinite sequence{xk}, then there exists 7> 9%such
that

fi=fia2 77||9k||2’Vk (30)
see [9].

X—X*HZ,VXE N(x", &) (28)

2. Anew Proposed Algorithm without line-search (NSSW)

In this section we propose a new algorithm without line-search based
on estimate step-size. We assume that (H1), (H2), (H3) holds we shall
implicitly assume that the constant Lin (H3) is easy to estimate. We must
estimate L, at each iteration. Certainly if the Lipschitz constant L of the

gradient of objective function is known apriore, then we can take L, =L in

the algorithm. We estimate Lipschitz constant L and find an approximation
L to Lwe defined
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L = {Lk A ,yElv“,g:(gk—gk1),2[f(xk1)—f<xk>]+(g(xk)—g(xk1))Tvk1} (31)
- y;;lva Hyk—lH ‘Nkle ‘Nklez

where V, ; =x =X 1, Vs = 0k —Gis
2.1. Outlines of the NSSW Algorithm without line search :

The outliers of the new algorithm without line-search may be given as follows:
Stepl: choose an initial point x, eR",v=0.8and M =10°set K =1.

Step2: if ||g,[=0 then stop! Go to step3.
Step3: Estimate L, €[L,,M],v=0.8,M =10°
Stepd: x,,, =x, —lgk ;
Lk
Step5: if f,_ > f,_, then go to step 6 else go to step7
Step 6: Vv, =(0.05)" go to step 7
Step7: setk =k +1 and if Y <0 then let lel and go to step2

k k

The formulae for «, =Li,(k >1)
k

L min M,max{Lk_l, A ,yklv“,gz(gk—g“)lztf(xk1>—f<xk)]+<g<2xk)—g<xkm%} (32)
ViV HVHH ‘Nk—lH ‘NHH

2.2. Some Theoretical properties of the NSSW Algorithm:

The new formulae are useful because they arise from the classical quasi-
Newton condition(Nocedal,1999) and from Barzilai and Borweins
idea(Barziliai&Borwein,1988) .

Some recent observations on Barzilai and Borweins method are very
exciting (Fletcher,2001;Raydoan,1997;Shi&Shen,2006;Diao&Lia0,2002).

Remark: the above theorem shows that we can set a large L, and small

v to guarantee the global convergence.
However, if L is very large then «, will be very small and will slow the

convergence rate of descent methods.
Theorem2.2.1 Assume that the hypotheses of theorem 1.2.1 hold. Denote
the exact step by «; (including exact line search rule (a) and (b)) then

oy Zgak (33)
Vv
Proof: Where L, defined (1)
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_l9ea=ai
||Xk+1_xk||
=(gk+1_gk)T(gk+1_gk)
V'V,
_ 9101 = 20410k + 9, 9
Ok 9 e
_l9al+ 9]
lgiflens
_1 lgical
a9l

= B +1]
ay
for the line search rules (a)and (b),(H3)and Cauchy-Schwartz
inequality, we have
g = os - 9l
2_(gk+l_gk)Tgk
2
=9l

L

+1]

Therefore
L 1
a, ZE
noting that L, > oL we have
lop_Vp__,»P

K—

LTL Lov v
In order to analyze the convergence rate of the new algorithm we use
assumption (H4) and lemma (2.2.1) hold.

Lemma2.2.1: If (H1) and (H3) hold and NSSW Algorithm with L, <M and

L <M generates an infinite sequence{x,}, then there exists » >0such that
fk - fk+1 2 77||gk||2’Vk (34)
Proof: By lemma2.2.1 and (H3) we have

oy >

F et ady) - fi= afdig(n +eadde)
1]

—

= ﬁggd.& +a ffE (glx, +ead,)— g, )de

= ngds; +a "cf,;””g(xk +ia, - gﬂ"jﬁ

o ey i
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1
=agid, +¢EELJ":|F£R iig.:;iz
a
= agdy, + o[

Taking d, =—g, and « - in the above formula,we have
k

fi—fa< ak”gk” + 2||gk||

\" 2 2
-l -5l

thus

A ]

(2,0 V)vL
2M 2 || k”
_(2p-v)vL
2M 2
we obtain the desired result.

3. Numerical results
All the two algorithms described in this paper were coded in double
precision newly-program FORTRAN programmed.

In comparisons of algorithms the function evaluation is normally
assumed to be the most costly factor in iteration hence, the cost of solving a
problem is normally presented in terms of the number of functions
evaluation (NOF), is valuable in comparing similar algorithms, and is also
presented here. The actual convergence criterion employed was
|, <1x10for all two algorithms, fourteen well-known test functions

(Appendices 1 and 2) see (More,Garbow&Hillstrom,1981) and with
dimensionality ranging (12-10000) are employed in the comparison.

The complete set of results is given in Tables (1), (2) while Table (3)
gives the percentage of NOF for each function was solved using the
following algorithms;
1-Shi & Shen Algorithm without line-search (SSW)

2- The New Algorithm without line-search (NSSW)
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The important thing is that the new algorithm without line-search needs
fewer evaluations of f(x)and g(x) than SSW algorithm. We can see that
other algorithm may fail in some case while the new algorithm without
line-search always converges. Moreover numerical experiments also show
that the new algorithm always convergence stably.

It is clear from the Tables (1), (2) of the numerical results that the new
proposed algorithm without line-search is very efficient and superior on the
standard SSW algorithm namely there are approximately about (94 -95)
improves of NOF for all dimensions .

Table (1):Comparison between the NSSW algorithm and SSW algorithms
using different value of 12< N <4320 for the 1% class of test functions.

Nof TEST SSW__(NOF) NSSW__ (NOF)
: FUNCTI
Test oN 12 36| 360 | 1080 | 4320 | 8640 | 10000 | 12 | 36 | 360 | 1080 | 4320 | 8640 | 10000
GEN-
i Do F |F| F F F F F 88 | 88 | 95 | 92 | 95 96 100
2
TPQ F |F| F F F F F 87 | 151 | 511 | 1117 | 4191 | 4567 | 5663
Per
3 Quadrai | F | F | F F F F F 66 | 137 | 538 | 952 [ 2855 | 5568 | 5363
€
4 drati : .
Q“”c"“ F |F| F F F F F 40 | 93 | 350 | 611 | 611 | 1450 | 2945
5 : g
dqdric F |F| F F F F F 327 | 277 | 311 | 318 | 320 | 312 312
6 GEN-
s F |[F| F F F F F 367 | 408 | 405 | 423 | 398 | 435 431
7
BDI F |F| F F F F F 90 | 92 | 99 | 101 | 104 | 104 107

Table (2):Comparison between the NSSW algorithm and SSW algorithms
using different value of of 12< N <4320 for the 2" class of test function

SSW  (NOF) NSSW  (NOF)

Neof TEST
= FUNCTI
- ON 12 36 360 1080 4320 8640 10000 | 12 36 360 | 1080 | 4320 | 8640 10000
es|
1 Recip 14834 15520 16959 17645 18511 18944 | 19021 | 521 | 552 | 616 | 647 | 687 706 710
2 fdl;:: 697 724 781 888 842 860 863 42 43 45 46 48 48 49 |
3

GEN-Q1 599 599 599 599 599 599 599 57 59 60 61 64 66 66
4 ‘

GEN-Q2 194 194 194 194 194 194 194 63 63 64 63 63 66 65
5 Digonal4 1232 1287 1401 1456 1525 1559 1567 46 47 50 52 54 56 56
6 Digonal6 1220 1275 1389 1444 1513 1548 1582 27 28 32 33 36 37 | ¥

" GEN- 3301 3460 3795 3955 4157 4258 4279 | 438 | 445 | 458 | 471 | 462 457 433
Shallow s

General TOTAL | 22077 | 23059 | 25118 | 26181 | 27341 | 27962 | 28105 | 1194 | 1237 | 1325 | 1373 | 1414 | 1436 1416
of 7 functions
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Table(3): Percentage performance of the NSSW algorithm against SSW
algorithm for 100% in NOF.

N Costs | NEW

12 NOF 94.59
36 NOF 94.64
360 NOF 94.73

1080 NOF 94.76
4320 NOF 94.83
8640 NOF 94.86
10000 NOF 94.96

4. Conclusions

In this Paper, a new step-size estimation numerical algorithm
without line search is proposed .Global convergence is derived for gradient
method in which the line-search is replaced by a step-size estimation whose
length is determined by a formula. Where the gradient method with
L, defined by (32) to construct gradient methods without line-search be the

best algorithm for test problems.
As a result, we should choose carefully L, in practical computations

in order to satisfy both global convergence and the fast convergence rate.
Our numerical results supports our claim and also indicate that the new
algorithm without line-search may be converge faster and is more efficient
than SSW algorithm in many situations.
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Appendix1

All the test functions used in Table (1) for this paper are from general
literature:
1. Generalized Recip Function:

n/3

f(x)= Z[(xsi_1 —5)% + X5, + X—é], X, =[2.5.1.,...,2.5.1].

(Xgi-1—%5i—2)°

2. Generalized Edger Function:
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n/2

FO) =D Xy —2)* + Xy —2)° X5 + (X +D?, %, =[1.,0.,...1.,0].
3. Gencla:rlalized quartic Function GQ1

f(x)= nixf + (X, + X7, % =[1.1.,...1].

4. Gencla:rlalized Quiartic Function GQ2:

f(x)=(x?-1)* +Zn:(Xi2 —x,-2)%,%=0[L1,.11].

i=2

5. Diagonal4Function:

n/2

FO)=> 302, +ox2), %, =[LL... 1] , c=100.

i=1

6. Diagonal 6 Function:
f(x) = Zn:(exp(xi ) - (A+x%)),% =[1.1.,..1.1].

YGeneréIized Shallow Function:

n/2

f(x):Z(x22, — Xy )2+ (L= Xy )% s Xy =[2.,-2.,.—2.,-2.].

Appendix2

All the test functions used in Table (2) for this paper are from general
literature:
1. Generalized Dixon function:

n/2

FOO=@—)% + A=) + 20 — %207 % =[l-1]
2. Tridiagonal Perturbed Quadratic Function:
n-1
f(x)=x7+Dix7+ (X, + % +%,,)%, % =[0.505.,...,0.50.5].

i=2

3. Perturbed Penalty Function:

f(x)= Zn:ixf +ﬁ(zn: xijz , X, =[0.5,0.5,...,0.5] .

4, Quatlj;atic Funcl';;on QF2:

f(x)=1 Zl(x ~1)% - =[0.5,0.5,...,0.5,0.5].

5. undrtlc Function (CUTE):

f(x) = Z(x +ox?, +dx2, ), X =[3.3.,...,3.3.] , ¢=100,d =100.
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6. Generalized Strail Function:

n/2

f(x)= Z(X;—l — Xy )? +100(1 - X2i—1)2 X =[-2.,...,-2].
i=1
7. Extended Block-Diagonal BD1 Function:

n/2

f(x)= Z(Xgi—l + Xzzi —-2)%+ &P (X, —1) =Xy ), X, =[0.10.1,...,0.1].

i=1
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