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Abstract

In this paper, we analyze sales data for two selected items from
a supermarket and apply polynomial regression models to uncover
insights into their sales trends. By fitting a polynomial curve to the data,
we aim to understand how such pricing affects the number of sales
of these items. This analysis compares the effectiveness of various
regression models in predicting the price of products in different contexts.
The linear regression model is the most effective for predicting the price
of tomato paste, as it gives the data a better fit, with almost identical
MSE and SEE, indicating similar prediction accuracy and errors. The
linear regression model is the most effective for predicting the dependent
variable, which is the number of sales (tomato paste) items, highlighting
that the price of the item (independent variable) is statistically significant
and provides a clear relationship with the dependent variable. In the
context of sales, the number of oil items as the dependent variable
prediction, the quadratic model is the most effective for explaining the
price of oil items with both independent variables (price of power one
and price of power two) being statistically significant, suggesting that the
quadratic model best captures the connection between the two variables.

1. Introduction:
An assessment of consumer behavior along with sales

patterns allows retail operations to boost their inventory con-
trols and pricing methods and achieve higher profits. Retail
stores, with their wide range of merchandise, contain sub-
stantial information that helps identify vital sales patterns for
individual products. The analysis of these patterns requires
polynomial distribution as a statistical tool to create forensic
models between two variables for making sales-based predic-
tions about upcoming trends. The distribution called the poly-
nomial distribution serves statistical needs by defining com-
plicated variable interactions without basic linear regression
patterns. A polynomial function combines various terms that
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combine exponents of variables with coefficients. The highest
exponent value in a polynomial model establishes its range of
adaptability for data adjustment. A second-degree polynomial
creates parabolic curves, but third-degree polynomials intro-
duce more advanced cubic relationships. Sales data analysis
utilizes polynomials as tools to predict item sales develop-
ment based on various time-dependent influences. Evaluating
data with polynomials gives us the ability to identify rising,
falling, and periodic behavior in sales patterns, which tradi-
tional linear regression models lack. Polynomial functions
have existed across multiple studies for a long period, espe-
cially in environmental sciences, where they serve to describe
intricate relationships between different variables. Different
models characterized by various equation degrees provide
flexibility for modeling nonlinear data dynamics [1]. The
polynomial regression tool offers strong abilities to forecast
waste production along with emissions and evaluate signif-
icant environmental factors required in waste management
studies. This method produces alternative connections be-
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tween complex mathematical curves that were derived from
past data records [2]. Past research indicates that polynomial
models surpass linear models because they better demonstrate
complex connections between waste production and GDP per
capita changes [3]. Because they monitor time-dependent
changes linked to income levels, recycling behavior, and con-
sumption patterns, third-degree polynomials demonstrated
effective performance in trash generation trend simulation.
This was because they tracked these changes [4]. Using poly-
nomial regression modeling allows accurate insights into fu-
ture waste effects and material shifts, which represents an
effective method for understanding complex waste systems.
Researchers commonly implement polynomials for environ-
mental models to analyze complex systems that occur during
waste management operations. Polynomial regression serves
as an effective mathematical tool to analyze multifaceted rela-
tionships between temperature, moisture content, and airflow
rates, which operate during mechanical-biological treatment
and bio-drying processes [5].

Researchers have established that polynomial regression
models efficiently optimize bio drying systems by identifying
relationships between temperature elevation and moisture re-
duction throughout time, as well as employing higher-order
polynomial functions to forecast net heating value in pro-
cessed waste products [6]. The research makes use of third-
degree polynomial models as a simulation tool to investigate
the impacts of temperature and airflow on the efficiency of
waste drying for the goal of industrial optimization [4].

The modeling relationship between sales data and time-
based independent variables, including pricing and promo-
tional activities, occurs through Polynomial Regression Mod-
els. The assumption of straight-line relationships from simple
linear regression does not apply to polynomial regression
because it enables more precise modeling of actual market
behavior through curved relationships. Research examines
polynomial regression models to understand sales influencers
and patterns while predicting market sales for the future. The
methodology incorporates market data with past sales statis-
tics to develop precise sales predictions, which help anticipate
customer needs and support operational decision-making. The
research examines the ability of polynomial regression to esti-
mate market sales and investigates prediction accuracy levels
for business market behavior understanding. This paper eval-
uates the implementation process of sales prediction using
polynomial regression models by identifying both possible
advantages and implementation challenges[7].

Analyzing consumer behavior alongside sales patterns
enables retail operations to improve inventory control and
pricing strategies, ultimately increasing profitability. Retail
stores, with their diverse merchandise offerings, hold a wealth
of data that can be used to uncover important sales trends for
individual products [8]. The analysis of these patterns often
requires the use of polynomial distribution as a statistical tool

to develop forensic models that explore relationships between
variables and generate sales-based predictions about emerging
trends [9]. Polynomial distribution supports such analyses by
capturing complex interactions between variables that cannot
be adequately modeled using basic linear regression tech-
niques [10]. A polynomial function consists of multiple terms,
each combining variable exponents with corresponding coef-
ficients [11]. The highest exponent, known as the degree of
the polynomial, determines its flexibility and ability to model
complex data patterns [8]. For instance, second-degree poly-
nomials produce parabolic curves, while third-degree poly-
nomials capture more intricate cubic relationships [12]. In
sales data analysis, polynomial models are valuable tools for
predicting product performance influenced by time-dependent
variables [13]. By evaluating data through polynomial func-
tions, analysts can detect upward or downward trends, as well
as cyclical behaviors in sales patterns that traditional linear
regression models often fail to capture [14]. The main ob-
jective of this paper is to analyze sales data for two selected
supermarket items using polynomial regression models to
gain insights into their sales trends. By fitting polynomial
curves to the data, the study explores how pricing influences
the quantity of items sold. Additionally, the analysis compares
the effectiveness of different regression models in capturing
and predicting sales behavior across various pricing scenarios.

2. Materials and Methods:
2.1 The Multiple Linear Regression Model:

Regression applications that involve many predictor vari-
ables are referred to as a multiple linear regression model.
Polynomial regression is a technique used in multiple regres-
sion. A response variable is regressed on the powers of the
independent variables in a polynomial regression model. The
basic multiple regression model of a dependent (response)
variable Y on a set of k independent (predictor) variables
x1,x2, . . . . . . .,xk can be expressed as:

y1 = β0 +β1X11 + . . .+βkX1k+ e1
y2 = β0 +β1X21 + . . .+βkX1k+ e2
.
.
.
yn = β0 +β1Xn1 + . . .+βkXnk + en)

(1)

yn = β0 +β1Xi1 +β2Xi2 + . . .+βkXik + en for i = 1,2, . . . ,n (2)

In a model of multiple linear regression, Yi represents the
response variable’s value for the ith observation. Xi j indicates
the value of the jth predictor variable for the observation ith.
β0 stands for the intercept of the regression plane (considering
multiple dimensions), and eachβ j (for j = 1,2, ...,k) denotes
the slope of the regression plane regarding the variable jthX j.
The termei is the random error for the case ith. In this model,
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we have (n) observations and k predictors, with the condition
that (nk > 1). The assumptions underlying the multiple re-
gression model are similar to those of simple linear regression
[15].

2.1.1 Assumptions of the Multiple Regression Model:
For each observation, the error terms follow a normal distri-
bution with a zero mean and a stastandard deviation σ .e error
terms are independent of each other, meaning the error for
one observation does not affect the error for any other ob-
servation. Furthermore, the errors are uncorrelated, meaning
that there is no relationship between the errors of different
observations. That is ei N(0,σ2) for all i when i = 1,2, ...,n,
errors are independently for each other. While the variables
Xj are random variables in correlation analysis, they are fixed
quantities in regression analysis. Regardless of the error term,
Xj is independent. Assuming that Xj are fixed values means
that we have realizations of k variables Xj and that the er-
ror term is the only source of randomness in Y. When using
matrix notation, we can rewrite model (1) as:

Y = Xβ + e (3)

The response vector Y and the error vector e are both
column vectors with a length of n, where n is the number of
observations. The parameter vector β is a column vector of
length k+ 1, representing the coefficients of the regression
model (including the intercept). The design matrix X is an
n× (k+1) matrix, where the first column consists of all ones
(representing the intercept), the second column contains the
observed values of X1 , and so on for each predictor vari-
able. The goal is to estimate the unknown values of β (the
regression coefficients) and e (the errors) [15].

2.1.2 Least Squared Eror Approach in Matrix form:
We use the least squares method to estimate the regression
parameters. The process employed in simple linear regression
is extended in this way. The sum of the squared errors is first
determined, and then a collection of estimators that minimize
the sum is identified. Equation (3) is used to determine the
errors [16].

e = Y −Xβ (4)

to find estimator β̂ we have to minimize the errors sum of
squares as:
Consider the fractional system involving the Caputo fractional
derivative of the form:

eT e+(Y −Xβ )T (Y −Xβ ) (5)

where (T) denotes the transpose of the matrix. Here eT e
is scalar. We can take the first delivery of this object function
with respect to the vector β . Making these equal to 0 (a vector
of zeros) we obtain normal equations:

XT X β̂ = XTY (6)

Multiply the inverse matrix of (XT X)−1 on both sides in
equation (6), and we will have the least squared estimator for
the multiple linear regression model in matrix form [8]

β̂ = (XT X)−1XTY (7)

Vector β̂ is an unbiased estimator of β . The fitted (pre-
dicted) values for the mean of Y (let us call them Y), are
computed by:

Ŷ = X β̂ = X(XT X)−1XTY = HY (8)

Where H = X(XT X)−1XT . We call this the hat matrix
because it turns Y into Ŷ . Matrix H is symmetric, i.e. H =
HT and idempotent, i.e. H2 = H The fitted values for the error
terms ei are residuals êi, i = 1,2. . . .,n, that are computed by

ê = Y − Ŷ = Y −HY = (1−H)Y (9)

where I is an identity matrix. The sum of squares of the
residuals SSE = êT êT has the X2 distribution with d fE =
n− (k+1) degrees of freedom and is independent ofβ̂ [17].

2.2 Polynomial Regression Model and Evaluation of
its Accuracy:

A special case of multiple regression is polynomial regression,
with only one response variable X. A one-variable polynomial
regression model can be expressed as:

yi = β0+β1xi+β2x2
i +β3x3

i + · · ·+βkxk
i +ei, for i= 1,2. . . ,n

(10)

where k is the degree of the polynomial. The degree of
the polynomial is the order of the model. Effectively, this
is the same as having a multiple model with X1 = X ,X2 =
X2,X3 = X3, etc. The mean squared error MSE is an unbiased
estimator of the variance,σ2of the random error term and is
defined in equation:

MSE =
SSE
d fE

=
∑

n
i=1(yi − ŷi)

2

n− (k+1)
(11)

where yi are observed values and ŷi are the fitted values
of the dependent variable Y for the ith case. Since the mean
squared error is the average squared error, where averaging is
done by dividing by the degrees of freedom, MSE is a measure
of how well the regression fits the data. The square root of
MSE is an estimator of the standard deviation σ of the random
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error term. The root mean squared error RMSE =
√MSE is

not an unbiased estimator of σ , but it is still a good estimator.
MSE and RMSE are measures of the size of the errors in
regression and do not indicate the explained component of the
regression fit [18].

2.3 Models and Formulas used in the Applied Part:
There are different orders of models of regression analysis,
see Figure 1.

2.3.1 Linear Regression:
Linear regression models a straight-line relationship between
the dependent variable (y) and the independent variable (x):

yi = β0 +β1xi + ei (12)

β0: Intercept (constant term).
β1: Slope (rate of change in y for a unit change in x).
ei: Error term (captures deviations from predicted values).

2.3.2 Quadratic Regression:
Extends linear regression by adding a squared term to model
parabolic relationships:

yi = β0 +β1xi +β2x2
i + ei (13)

2.3.3 Cubic Regression:
Incorporatesx3to capture relationships with multiple inflection
points or S-shaped patterns:

yi = β0 +β1xi +β2x2
i +β3x3

i + ei (14)

3. Data Collection and Analysis:
The data for this paper investigates the price sales of two items,
paste tomato and oil, and their effects on the number of items
sales in the specific market known as Golden Company in
Erbil, Iraq, for the production and marketing of tomato paste
& oil that has been experienced in this field for many years.
it showed us 312 observations had been used for this search:
where 156 for oil and 156 for tomatoes paste, then analyzed
the data by polynomial regression model in different power.

3.1 Discussion of Results of the Sale of Tomato
Paste:

Among the three models, as presented in Table 1 and Figure
2, the linear regression model is the best, with the least mean
square error-presented at 3635.405 and a standard error of
the estimate of 60.294. This model strikes a balance between
simplicity and performance. Finally, the quadratic and cubic
models add unnecessary complexity without improving pre-
dictive accuracy. Both models have the same metrics, having
an MSE of 3643.968 and a standard error of 60.365, showing
again how neither of them outperforms the simpler Linear
model.

Table 2 reveals that a cubic regression model best cap-
tures the relation between the price of X and the depen-
dent variable, as evidenced by the significant cubic term
(B = −81.906, p = 0.040). While the linear model shows
a significant negative relationship (B =−0.107, p = 0.001),
indicating a constant decrease in the dependent variable with
increasing price, the quadratic model fails to provide addi-
tional explanatory power, with non− signi f icant coefficients
for both the linear and squared terms. The significance of the
cubic term in the most complex model suggests anon− linear
relationship, potentially involving inflection points where the
impact of price changes varies across its range. This result
aligns with prior research on non− linear pricing effects, em-
phasizing the need for higher-order terms to capture complex
economic dynamics. Further research should explore these
non− linear patterns with larger datasets and additional vari-
ables to validate and generalize these findings.

The regression analysis illustrates a negative linear rela-
tionship between the price of tomato paste and the dependent
variable, as shown by the unstandardized coefficient (B = -
0.022). This indicates that for every unit increase in the price
of tomato paste, the dependent variable is expected to decrease
by 0.022 units. However, this relationship is not statistically
significant (p = 0.276), suggesting that the price of tomato
paste does not reliably predict changes in the response variable
within this linear model. The constant term (B = 169.204),
representing the predicted value of the response variable when
the price of tomato paste is zero, is statistically significant
(t = 4.836, p = 0.000). Despite the apparent trend, the lack
of significance in the linear relationship undermines its pre-
dictive validity, indicating that alternative models or variables
may better explain the observed variation.

3.2 Discussion of Results of Sale Oil Models:
Table 3 illustrates the ANOVA results of oil sales. It can be
noticed that the Quadratic Model has the best fit since its mean
square error is smaller, MSE: 4598.188, and the standard er-
ror: 69.038, compared to the Linear Model with a MSE of
4766.225 and Std. Error of 69.038, and the Cubic Model,
which is 4567.330 and 67.582, respectively. Fig. 3 compares
the performance of linear, quadratic, and cubic regression
models in capturing the relationship between the price of oil
and the dependent variable. The quadratic and cubic models
both exhibit statistically significant fits (p = 0.021), indicat-
ing that they can capture underlying non-linear patterns in
the data. In contrast, the Linear model, with a p-value of
0.276, fails to achieve statistical significance, suggesting it is
insufficient in describing the observed relationship. Among
the models, the quadratic model strikes a balance between
simplicity and accuracy, effectively capturing the trends with
minimal overfitting. While the cubic model adds complex-
ity, it does not significantly outperform the quadratic model,
emphasizing that the quadratic model is likely the most ap-
propriate choice for generalization and interpretability in this
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Figure 1. Different orders models of regression analysis

Table 1. The results of different models of the ANOVA table of tomato paste sales

Model Mean Squared Error F Sig. Std. Error of the Estimate

Linear Regression 3635.405 11.354 .001 60.294

Quadratic 3643.968 5.982 .003 60.365

Cubic 3643.968 5.982 .003 60.365

Figure 2. Models of selling the tomato paste.

analysis. The analysis of the relationship between the price
of X and the response variable reveals distinct patterns across
the three models. The linear regression model indicates a
negative but statistically insignificant relationship (p=0.276),
suggesting it does not adequately capture the trend. In contrast,
the quadratic model identifies a significant positive relation-
ship (p=0.021), along with a diminishing effect as the price
of X increases, evidenced by the significant quadratic term
(p=0.011). This suggests that the quadratic model provides a
better fit, capturing the non-linear dynamics of the data. How-
ever, the cubic model, despite its added complexity, fails to
yield significant coefficients (p > 0.05) and does not improve
interpretability over the quadratic model. Thus, the quadratic
model emerges as the most suitable for explaining the rela-

Figure 3. Models of the oil sales.

tionship between the Price of X and the dependent variable.

The following three fitted models linear, quadratic, and
cubic are shown in different colors along with the price of
oil against the variation of the dependent variable throughout
the observed data points for the same. The least square lin-
ear model is in black and has a slight negative slope, which
indicates a relationship that is inverse and weak and does not
capture the obvious curvature or trend in the data.

This shows a very good fit for the quadratic model, as is
observed by the blue curve in the figure below. It shows that
with an increase in the price of oil, the dependent variable goes
up and reaches a maximum at middle-range prices, roughly in
the range of 1000-1500 then turns to decline with increased
prices-a diminishing the effect of higher-range price increases.
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Table 2. The different results of the estimated tomato paste sales

Model Variable Unstandardized Coeff. t Sig.

B Std.Error

Linear Regression Price of X -.107 .032 -3.370 .001
(Constant) 261.721 57.346 4.564 .000

Quadratic
Price of X -.783 .848 -.923 .357
Price of X2 .000 .000 .797 .426
(Constant) 854.174 745.261 1.146 .254

Cubic

Price of X -.783 .848 -.923 .357
Price of X2 .000 .000 .797 .426
Price of X3 -81.906 .858 -2.070 .040
(Constant) 854.174 745.261 1.146 .254

Table 3. The different results of the ANOVA table of oil sales models

Model Mean Squared Error F Sig. Std. Error of the Estimate

Linear Regression 4766.225 1.197 0.276 69.038

Quadratic 4598.188 3.252 0.021 67.810

Cubic 4567.330 3.333 0.021 67.582

The cubic model, represented by the red curve, adds even
more undulations and improves the fit only a little. This
added complication doesn’t help much with interpretability
but makes the model prone to fitting the noise in the data.

Overall, the quadratic is the best fit. It captured the general
trend: the positive influence of price on the dependent variable
up to a point - somewhere between 1000 and 1500 - after
which it decreases. This suggests that moderate prices are
optimal for higher values of the dependent variable, whereas
very low or very high prices are not as good.

4. Conclusions:
The linear regression model of Tomato Paste provides the most
effective fit for predicting the price of tomato paste. It demon-
strates a slightly better overall fit based on the F-statistic and
p-values, which indicate a stronger model performance. The
model also shows nearly identical Mean Squared Error (MSE)
and Standard Error of Estimate (SEE), suggesting that the
linear model delivers comparable prediction accuracy and er-
ror margins when compared to other models. For the price
of X, the linear regression model is the most effective due
to the statistical significance of the variable Price of X. This
model presents a clear, interpretable relationship between the
independent and dependent variables. While the quadratic and
cubic models include non-linear terms, only the cubic model
showed statistical significance for Price of X³. However, the

linear model still stands out as the best choice for simplicity
and model fit.

When predicting the price of oil, the cubic regression
model outperforms both the linear and quadratic models. It
achieves the best prediction accuracy with the lowest SEE,
making it the most effective model for capturing the complex
relationship between oil price and sales. The quadratic model
is the most effective for explaining the price of oil. Both Price
of X and its squared term (Price of X²) are statistically signifi-
cant, indicating a non-linear, parabolic relationship between
oil price and the dependent variable. This suggests that oil
prices influence sales in a non-linear fashion, with the price’s
impact changing at different levels.

5. Recommendations:
1. The quadratic and cubic models, even though they are

statistically significant for the price of tomato paste, do
not offer any extra predictive power or improvement
in error metrics when compared to the linear model.
Therefore, you might consider using the linear model
for its simplicity and effectiveness unless there is a
specific reason to use more complex models, such as
theoretical expectations of non-linearity in the data.

2. The cubic model is the most successful in explaining
the variation and delivering accurate forecasts, given
that the MSE and SEE for the price of oil are lower than
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Table 4. The different results of the estimated oil sales models

Model Variable Unstandardized Coeff. t Sig.

B Std.Error

Linear Regression Price of X -.022 .020 -1.094 0.276
(Constant) 169.204 34.989 4.836 0.000

Quadratic
Price of X .250 .107 2.327 0.021
Price of X2 -8.908E-5 .000 -2.582 0.011
(Constant) -29.504 84.296 -.350 0.727

Cubic

Price of X -.233 .354 -.657 0.512
Price of X2 .000 .000 1.151 0.252
Price of X3 -1.278E-7 .000 -1.428 0.155
(Constant) 73.190 110.574 .662 0.509

the other models. If you believe the data might have a
more complex non-linear relationship, the cubic model
would be the optimal choice.
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