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Abstract

This study focuses on the Fredholm integro-differential equations
and is frequently found in areas of applied mathematics, physics, and
engineering fields. To address these systems and obtain exact of
solutions under suitable conditions, we propose a novel analytical ap-
proach. We choose the Haar wavelet colocation method for processing
due to its simplicity, effectiveness, and ability to handle non-smooth
solutions. The integral terms in these equations are determined
using the trapezoidal rule, which effectively strikes a balance between
accuracy and computational efficiency. These results are compared with
analytical solutions. The comparisons show that the suggested strategy
yields highly accurate results and offers a solid framework for solving
the Fredholm integro-differential equations.
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1. Introduction:

Systems of Integro-differential equation de Fredholm
(SFIDESs) are widely used in various scientific and practical
fields, with notable applications in glassmaking [1], hydro-
dynamics at the nanoscale [2], simulating the competition
between the immune system and cancer cells [3], and study-
ing the noise related phenomenon related [4]. Numerous
studies have been conducted in recent years as a result of the
SFIDEs’ popularity. There are several techniques, such as the
variational iteration technique [5], the Chebyshev polynomial
technique [6], the Tau technique [7], the differential trans-
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formation technique [8], the Runge-Kutta techniques [9], the
bloque impulse function technique [10], or even the spectral
technique [11]. The Laguerre strategy for solving SFIDEs
was examined by Zafer Elahi et al. in [12], in addition, nu-
merical analysys have extensively investigated methods for
solving integral equations of both linear and nonlinear types.
Notably, the works of Saber, Surme R. and colleagues, as
well as Najem et al., focus on systems involving Fredholm
integro-differential equations [13], [14]. Additional contribu-
tions to this area are presented in ref.[15, 16, 17]. The noyau
de Resolvent has been studied by a variety of researchers in
[18, 19, 20, 21]. The Resolvent kernels technique is gener-
ally regarded as an effective method for solving the Fredholm
integro-differential equations. Using the properties of the Re-
solvent kernels, this technique provides a systematic way to
transform integro-differential equations into more efficient
equivalent structures. Lepik [22], Babolian [23], and Aziz et
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al. have employed the Haar vague Lette technique. [24] to
discuss the Fredholm-Nolinear integrals. The Haar wavelet
approach was recently used by Najem A. Mohammad and
associates [25, 26, 27] have worked to solve both integral and
partial integro-differential equations. Haar wavelets are ad-
vantageous due to their simplicity, orthogonality, and compact
support. The main advantages include sparse representation,
quick transformations, and the ability to create effective ma-
trix representation techniques. Since the base Haar is the most
straightforward type of wavelet spline, with a polynomial de-
gree equal to zero, it offers a relatively low computational
cost. Therefore, Haar wavelets are frequently used to solve a
variety of problems by converting them into linear equation
systems with collocation points, which are then solved using
MATLAB, as explained in [25].

In this study, we presented both analytical and numerical
methods to solve the SFIDEs. [4]

Y 0{” ()= v1(6) + A [ 15,7101 (1) + iz, )
i=1 a

m

b
Y. 51085 = v2ls) + 2o [ Thar(s:r)01 (1) ka5 ()l
£

)]

with initial conditions;

o ) = oV 0)=B

where i, j=1,2,3,....n, and " (s) = (d"¢y)/(ds"),
¢2">(s) = (d"¢2)/(ds"), denote the nth derivatives of ¢; and
¢ with respect to s, respectively (Wazwaz, 2011).

The functions y; (s), ¥ (s), k11 (s,7),ki2(s,r), ka1 (s,7) and
kpo(s,r) are assumed to be known and sufficiently smooth,
real-valued functions defined on the domain[a, b] X [a,b]. The
parameters A; and A, are given real parameters, involving
complex kernels or high nonlinearity.

Although the proposed kernel solver methodology aims
provides a solid framework for analysis, efforts aim to en-
hance high computational precision and efficiency, on-going
particularly in equations with complex kernels or high non-
linearity. These components how to importance of ralldating
and retiming. This highlight structure at this work is outlined
as followed. Using the technique of the Resolvent kernels,
Section 2 suggests an innovative approach to solving a spe-
cific case of the Fredholm linear integro-differential equations
n systems (SLFIDESs). Section 3 discusses the Haar wavelet
technique via collocation (HWCM), while Section 4 presents
a numerical model that uses Haar wavelet to solve a system
of second-order (FIDE). The effectiveness and precision of
the techniques presented in Sections 2 and 4 are examined in
section 5 by applying them to various test examples. Section
6 offers a detailed analysis of these cases by comparing the
numerical and exact results of a first-order system (FIDE)
that uses both the wavelet Haar and the Resolvent kernels
methods. Additionally, it examines the specific case of the

SLFIDEs addressed in Section 2 using the Resolvent kernels
technique. Finally, Section 7 sums up the study’s main results
and conclusions. This section’s goal is to present analytical
and approximate methods for

2. Description Methods:

dealing with coupled systems (FIDE). The techniques
mentioned include the use of Haar wavelets and the Resolvent
kernels approach, which offer precise and effective solutions
to these complex systems.

2.1 Analytical Method:
We introduce a novel technique to solve a special case of
(SFIDEs) in Eq. (1), given as follows:

0{7(5) = v )+ 41 [ Tt (5,700 (1) + ka5, ) 0n (),

047 (5) = wal5)+ 2 [ o (5,7)0n 7). a1
2)

After introducing the problem through a system of integral
Fredholm linear equations (SLFIE), the system is then solved
by combining the direct calculation method with the noyaure
solved technique.

Now, by integrating both sides of system (2), n times from
0 to s until we obtain ¢; (s) and ¢ (s):

01) = )+ 21 [ Te1n(s. )01 () + 802
“ 3)
02(5) = wa(s) + o [ g (5,1101(7) + 8225, ) 0u (1)

Where w () is the result of integrating y; (s) with those
terms at initial conditions and w(s) is the result of integrating
v, (s) with those terms at initial conditions,
gu1(s,7),812(s,7),821(s,7),822(s,7)
are the results of integrating number of thekernels.

The kernels:

kll(sar)7k12(sa r)7k21 (Sa r)7k22(sa V).

The new kernels g12(s, ) and g»; (s, ) are separable functions,
defined as follows:

g12(s,r) = di(s)hi(r),
g21(s,r) = da(s)ha(r).

Substituting Eq.(4) into Eq.(3), we obtain:

“

b b
&1 (s) =wy (s)—i—?L]/a g11(57r)¢1(r)dr+/11d1(s)/u hi(r)¢a(r)dr,

b b
02(s) :wz(s)—l—lzdz(s)/a ha(r) ¢y (r)dr—&-lz/a g2 (s,r) o (r)dr.
5
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To simplify Eq.(5), we define:

A= [y (r):(r)dr ©
B= [ ha(r)gn (r)dr

and substituting Eq.(6) into Eq.(5), we obtain:

O1(s) = wi(s) + MAdi (s) + A [ gu1 (s, r) o1 (r)dr,
02(s) = wa(s) + AaBda(s) + M [ g2 (s, 7) 9o (r)dr
@)

Now we solve Eq.(7) using the Resolvent kernel method.
Let K(s,r) = g11(s,7) and K*(s,r) = g22(s,7),
and K (s,r) = K(s,r), then the iterated kernels are defined
by:
K, (s,r) = ff K(s,2)k(y—1)(z,r) dz,where n > 2,
and

R(s,r;A) = il”flkn(s,r). (3)
n=1

Using this representation, the solution of the general equa-
tion given in Eq. (7) takes the form:

b
0(s) = w(s)+ A / R(s, A ) w(r)dr. ©)

By substituting Eq. (9) and inserting (8) into Eq.(7) , we
derive the following expressions for ¢ (s) and ¢ (s):

01(5) = w1 5) + My )+ [ RG5, 7 2) 001 1)+ oy (1)

b
0 (5) = wa(s) + MaBda(s) + Xz / R(s,r3 ) (wa(r) + AaBda(r))dr.
(10)
Using the result from Eq.(10) into Eq.(6) we find the
value of A and B, then by substituting these values back into

Eq. (10), we get the exact solution(¢; (s), ¢ (s)) for the given
system.

2.2 Haar Wavelet (HWCM):

1 for s€[Y,Y,),
H(s) = -1 for  s€[Y2,13), (11)
otherwise,

T, where p = 1,2,3. is determined as follows:

Y =a+ (b—a)k/m,
Yo=a+ ((b—a)(k+0.5))/m,
Ys=a+((b—a)k+1))/m

—a

a

The formula i = m + k+ 1 is used to obtain the value of the
index i,

and
b— -0.5

Sq:a#—%,q:l,Z,...,N. (12)

N
is used to find the collocation points

s—1 fOI‘ RS [T],Tz)
p,-,l(s) = Y3—s for xe [Tz,Yg) (13)

0 Otherwise

(S,g])Z for xe [Tl,Tz)

2

pia(s) = ﬁ/ (rgz—s) for x€[Y,Y3) (14)

0 oW,
In general, we have

Ls=1)* if seY,Y)

pussi(s) =4 7T voreTas)

=T =2(s =0y +(s=X)"} if se3))
0 else where

where x =0,1,2,3,...,N. The value of p;(s) increases on
[Y1(i),Y2(i)), decreases on [Y2(i),Y3(i)), and attains its max-
imum at Y, (i), Consequently,

) b—a b-a
max (pi,l(s)) = pii(ax(i)) = om 2t (16)
and
b—a b—a\?
max () = 73 = () 4

3. Development of the Numerical Method:

This section focuses on developing a numerical method that
uses the Haar wavelet colocation technique to solve a specific
variation of equation (1), this variation further and modelled
as a system of different equations is reformulated as a system
of higher-order functional integro-differential equations

c391 (s)+ 20y (s) + 191 (s)
i)+ [ vt (5,7)1 (1) + krals, ) o)l
b0y () + b2y (5) + b1a(s) =

va(s) + 42 /ab[kzl (5,7) 91 (r) + ka2 (s,7) 2 (r)]dr

(18)
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The initial conditions are:

91(0) = 01,61(0) = B1,95(0) =0 and  $2(0) = P
Here, the quantities cy,c2,c¢3,b1,b2,b3, 001, B1, 0 and B, are
constant. The functions v (s), 2 (s) are known, A; and A, are
given parameters and the kernels, ky1(s,7),ki2(s,r), k21 (s,7)
and kpy (s, r) are defined. Assume:

n 2M
61 (s) =Y aihi(s). (19)
=1

By integrating both side of Eq. 19 from O to s and using
the initial conditions specified in Eq. 18, we obtain

, 2M
O (s) =01+ Y aipii(s)
=1

Jj=

(20)

By integrating both side of Eq. (20) from O to s and applying
the initial conditions specified in Eq. (18), we get

2M
O1(s) =P+ aus+ Y aipia(s) Q1)

j=1

j=1 j=1

By replacing s with r in Eq. (21) we obtain:

2M

O1(r) =P +air+ Z aipia(r).

J=1

(22)

Using a similar approach, we can express the second derivative
of ¢, (s) in terms of HWC as shown below:

2M
¢1(s) = Br+ous+ Y aipin(s)

(23)
j=1
By replacing s with r in Eq. (23) we obtain:
oM
92(r) = B2+ 07 + ) dipia(r). (24)
j=1

By inserting Eqs.(19)-(24) into the system defined in (18), we
obtain the following system of equations:

2M 2M 2M
3() aihi(s)) +ea(on + ) aipii(s)) +ei(Bi+ous+ Y aipia(s))
=

b 2M 2M
=vi(s)+4 / kit (s,7)(Bi +our+ Y aipia(r)) +kia(s,r) (B + 0ar+ Y dipia(r))ldr
a i—1 v

Jj=
M 2M

= 25)

2 2
bs(ZM dihi(s)) +ba(0a+ Y. dipii(s)) +b1(Ba+0as+ ) dipia(s))
=1 i=1 =1

J= J=

b 2M 2M
=yn(s) +lz/ ka1 (s,r) (B + our+ Y aipia(r)) +kaa(s,r) (B2 + 0ar+ Y dipia(r))ldr.
a =1

J

J=1

The integral terms in Eq.(25) are discretized using the following formula

b _
Ja f () Bt YR, f (on)
Using the collocation points:

Xy =cCy+ (clfS)](meo.S)

2M 2M

wm
e3(Y aihi(s)) +ea(on+ Y aipii(s)) +ei(Bi+ous+ Y aipia(s))
= '

j=1 j=1

ORI

m=1

b—a % ( kll(syrm)(ﬁl“‘alrm‘FZ?gI aipia(rm)) )
i, 1) (B + 0ar + £3, dipia ()

(26)

M M wm
b3( Y dihi(s)) +ba(oa+ Y dipii(s))+bi1(Br+0as+ Y dipia(s))
=1 '

j=1 j=1

= l[/z(s) + A M

m=1

b—a % ( ka1 (s,7m) (Br + 01w + X3, aipin(rm)) )
+haa (s, rm) (Ba+ 0rm + XY dipia(rm))
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By solving the system in Eq.(26), we obtain the Haar coef-
ficients a; and d;. Then, by substituting these coefficients
into Egs.(21), and (23), we obtain the approximate solution to
Eq.(18).

Theorem 4.1: Consider the function f(s) = ¥ e[ 2(R),
which is continuous on the interval [0,1], and assume that
it’s first derivative is bounded. That is, for all se[0, 1], there

exists a constant {such that ‘df

assumptions, the Haar wavelet method 18 convergent, meaning
the error | € | tends to zero as J — «.The convergence is of
order two, and the error satisfies the following asymptotic
estimate: || € ||,= 0(22,%),

where

e :| ¢Exact _ ¢Approx. | .

Proof. A detailed explanation of the proof can be found in
[28].

4. Computations:

The accuracy and validity of the proposed methods for solving
the SFIDE, as described in sections two and four, are investi-
gated using various examples in this section.

4.1 Analytical Solutions:
This section illustrates the application of the methods devel-
oped in Section 2 through a variety of examples.

Example 4.1: Consider the coupled systems of Fredholm
integro-differential equations

¢{(S)—ECOS(ES) 23 4 [ 11 (r) + ¢o(r))dr
Pii(s) = 9,(s) = *2+fo (91 (r) + 6562 (r)]dr
$1(0) = and $(0) =0.

27)

By applying the Resolvent kernel method presented in Section
2 to Example 4.1, and integrating Eq. (27) from O to s, we
obtain the following system of integral equations:

¢1(s) = Sin(m) Z 3545 Jo [ron (r) + 9a(r)]dr

28
b2(5) = Zs+ Jy 501 (1) + 35°0a )l @9
Let:
1
A= /O 02(r)dr (29)
Substituting equation (29) into (28) then, we get
1
01 (s) = sin(ms) — n+3s+As—|—/ st @y (r)dr. (30)
Y 0

Rewriting Eq.(30) in the standard form:

92(s) = w(s) + 4 [ k(s,r)§a(r)dr,

where:

y(s) = sin(ms) — Z2s+As,A = Lk(s,r) =sr and a=
0,b=1

The iterated kernels &, (s, r) is defined as:

sr n=1,
knlsir) = {fo] k(s,2)kn—1(z,r)dz=(3)"Lsr n>2, b
and
(s,;5A) == (32)

Substituting Eq. (32) is inserted into the following expression
allows as to compute

01(s) = w(s) + 4 [ R(s,;A) w(r)dr
Therefore,
. 3tA—-n-3 3 (b | 3mA—m—3

91(s) = sin(ms) + %s-ﬁ- Es/0 r(sin(zr) + %r)dr.
(33)

Simplifying the resulting integral gives:

9mA -3
01 (s) = sin(ms) + %ns (34)

Now to find the value of¢,(s) we substitute the value A,
and ¢ (s) which are defined in Eq.(34) and Eq.(29) in Eq.(28),
reads

— 1 —
P (s) = —2s+3As2 —|—s/ (sin(mr) + Mr)dr, (35)
T 0 67
and
9mA -31
=3As"+ | ————|s.
92(s) = 3As +[ on }s (36)

Substituting Eq.(36) in Eq.(29) we obtain
A= [y (3Ar% + 2ZA=3T 1y gy,

Then A = %
And substituting(A =
the exact solution

%) into equations (34) and (36), we get

¢1(s) = sin(ms), and ¢ (s) =
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Example 4.2: Consider the coupled systems of SFIDEs

01(5) = —4+ [y 1 (1) + 362 ()]ar
0,(5) = — 35+ 3 + 3 [r01 (1) + 250 (1 )]dr
0,00 =1, ¢:(0)=0)

6,000 =0, 6:(0)=0.

By using the Resolvent kernel method on Example 4.2
and integrating Eq.(36) from O to s, we get

01(s) = 25 s+ 5 / (101 () +302(r)]dr

3
1, 5 37)
o (s) = —§s3 + gsz +/0 [Eszrq)l (r)+ §s3¢2(r)]dr
1
A= ¢2(r)dr
(38)

B= / roy (r

Inserting the value of A, defined by Eq.(38), into ¢ (s)as given
in Eq.(37), gives:

1
o1(s) = (354 - i) s2 s+ %/0 s2réy (r)dr

Rewriting Eq.(39) in the standard form

(39)

01(s) = w(s)+ A / ’ k(s.1)0n (P)dr

Where

v(s) —(32A Z)S +s5,A= 2, k(s,r) =s’r anda=0,b=1.
The iterated kernels k, (s, r) is defined by:

52r n=1
ky _ 40
(s, r) {f()] k(s,2)kn—1(z,r )dz_(z)n I$2r n>2 (40)
and
R(Sa r’)v) = ;szr. (41)

To find the solution of ¢;(s), we insert the R(s,r;A) = &52r

7
into the following formula
01(s) = w(s) + 4 [ R(s, ;1) w(r)dr,
This implies that
(A _2\ge iz/l 34 2\ 2
o1(s) = < 3 3)s +s+7s A > 3" +r° ) dr, (42)

and
T2A —24
$1(s) = (6) st +s

Now, inserting the value of B, defined by Eq.(41), into
@2 (s) as given in Eq.(40), gives

(43)

1
o)==+ (5+3) 45 [ Fo0 (44)
Rewriting Eq.(44 ) in the standard form
b
0205) = () + 2 [ k(s r)a(r)dr (45)
a
where
y(s) = -3¢+ (5+2)s% A =1/3,k(s,r) =5°
anda=0,b=1.
The iterated kernels &, (s, r) are given by
53 n=1

0050 = { e s e (10 n2 @O
and
Ris.rd) = Y A" k(s = Yn= Dby ypip = B

A " ( 37 4 [Th

(47

Inserting Eq.(47) into the following, expression ¢; (s) to
find

92(s) = y(s) + A [} R(s, s A)y(r)dr
We obtain

1
P (s) = —és3+ (g +%> s2+%s3/0 (—%r3+ <§+%> 2ydr,  (48)
and
15 B 5\, 4B+6 4
=—— —+= . 4
02(s) 5° +(2+6>s+ " (49)

To compute A and B, we insert the formulas for ¢; (s) and
@2 (s) from Egs.(43) and (49) into the system given by Eq.(36),
which gives

A=1/3,

B=1/3. ©0)
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Figure 1. Numerical solution for Example 4.1, for ¢ (s)

(= = Exacts, .,"
0811 o approx 8, 2
o

0.2 04 0.6 08 1

5

Figure 2. Numerical solution for Example 4.1,for ¢, (s)

To obtain the exact solution, we substitute the values of
A and B, given into Eq.(50), into Eqgs.(43) and (49), and we
obtain

¢1(s) = s, and ¢ (s) = 2.

4.2 Numerical Solutions:

In this section, we present a series of numerical experiments
to assess the effectiveness of the proposed numerical method.
The computed results are compared against the analytical so-

Iutions introduced in Section 2. Specifically, q)fx“”""”l', and

. . Appro.sol Appro.sol.
gExact-sol denote the exact solutions, while ¢y 777" ¢5PP™-%

represent the corresponding approximate solutions forg; (s)
and ¢,(s), respectively. To evaluate the accuracy of the

method, the absolute error is computed as: Absolute Error =
|¢iExact sol. __ ¢;4ppmx. S()l",i —1,2

.

1 v v + T
09
08"
07t
06"
05} - K
04
03"
02}

017

0 . . .
0.4 0.6 0.8 1
Figure 3. Numerical solution for Example 4.2, for ¢; (s)

--, Exact
L% Approx

0 0.2

1

0.9+
0.8
07+
0.6
™05+
0.4+
0.3
0.2

0.1

0

0 0.2 0.4 0.6 0.8 1

Figure 4. Numerical solution for Example 4.2,for ¢ (s)

Next, we explore the Haar wavelet collocation method,
detailed in Section 2, by demonstrating it with Example 4.2.

The absolute error statistics in Tables 1 and 2 clearly
demonstrate that the numerical solutions obtained using the
Haar-suggested colocation method matches the relevant ana-
Iytical solutions in every evaluation case. These smaller error
amplitudes supported the high level of precision achieved by
numerical model. Additionally, the characteristics of the so-
lution are shown in Figures 1, 2, 3 and 4, together with the
uniform mail age distributions related to it. These illustrations
provide an additional view of the system’s physical behaviour
by capturing precise dynamics of the solution across selected
spatial points.

In addition to roughly following the trend of analytical
solutions, approximate solutions also show stability and con-

Kirkuk J. Sci. Vol. 20, Iss.3, p. 55-65, 2025
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Table 1. Comparison of Approximate and Exact Solutions for Example 5.1 Using HWM and RKM.

5 pirrro- ol gExact sol. Apsolute Error ¢y PP 0t gEwact sol. - Apsolute Error
7.81e-03 2.45e-02 2.45e-02 2.36e-05 4.43e-05 6.10e-05 1.67e-05
2.34e-02 7.34e-02 7.35e-02 7.08e-05 3.79e-04 5.49e-04 1.70e-04
3.90e-02 1.22e-01 1.22e-01 1.18e-04 1.20e-03 1.52e-03 3.20e-04
5.46e-02 1.70e-01 1.70e-01 1.65e-04 2.52e-03 2.99¢-03 4.65e-04
7.03e-02 2.18e-01 2.19e-01 2.12e-04 4.33e-03 4.94e-03 6.07e-04
8.59e-02 2.66e-01 2.66e-01 2.59¢-04 6.63e-03 7.38e-03 7.45e-04
1.01e-01 3.13e-01 3.13e-01 3.06e-04 9.43e-03 1.03e-02 8.80e-04
1.17e-01 3.59¢-01 3.59¢-01 3.52e-04 1.27e-02 1.37e-02 1.01e-03
1.32e-01 4.04e-01 4.05e-01 3.99¢-04 1.65e-02 1.76e-02 1.13e-03
1.48e-01 4.49¢-01 4.49¢-01 4.45e-04 2.07e-02 2.20e-02 1.25e-03

Table 2. Comparison of Approximate and Exact Solutions for ¢; and ¢, in Example 4.2 Using HWCM and RKM.

Si

¢Appro. sol.
1

Exact  sol.
1

Absolute Error

Appro.  sol.
%

¢Exact sol.
2

Absolute Error

7.81e-03 7.81e-03 7.81e-03 3.22e-07 6.11e05 6.10e-05 8.19e-08
2.34e-02 2.34e-02 2.34e-02 2.90e-06 5.50e-04 5.49e-04 7.40e-07
3.90e-02 3.90e-02 3.90e-02 8.07e-06 1.52e-03 1.52e-03 2.07e-06
5.46e-02 5.47e-02 5.46e-02 1.58e-05 2.99e-03 2.99e-03 4.10e-06
7.03e-02 7.03e-02 7.03e-02 2.61e-05 4.95e-03 4.94e-03 6.85e-06
8.59e-02 8.59¢e-02 8.59¢e-02 3.90e-05 7.39e-03 7.38e-03 1.03e-05
1.01e-01 1.01e-01 1.01e-01 5.45e-05 1.03e-02 1.03e-02 1.45e-05
1.17e-01 1.17e-01 1.17e-01 7.26e-05 1.37e-02 1.37e-02 1.95e-05
1.32e-01 1.32e-01 1.32e-01 9.33e-05 1.76e-02 1.76e-02 2.54e-05
1.48e-01 1.48e-01 1.48e-01 1.16e-04 2.20e-02 2.20e-02 3.20e-05

sistency of various spatial locations, highlighting the effec-
tiveness of the technique in handling the complexity of the
integro-differential equation of Fredholm combined equations.
Visual comparisons reinforce the numerical results by high-
lighting slight deviations from the exact curves, even in re-
gions where the solution exhibts rapid fluctuations. In con-
clusion, the strong correlation between numerical and precise
solutions, supported by a quantitative error analysis and a
visual inspection, analytic demonstrates the accuracy, robust-
ness, and reliability of the Haar collocation technique. These
results support the proposed technique as a strong and effec-
tive tool for solving the Fredholm systems with combined
integro-difference, particularly in cases where the analytical
solutions prove difficult or impossible to obt.

5. Conclusions :

The main goal of this paper is to solve a system of integro-
differential Fredholm equations analytically and numerically.
We use the Haar wavelet collocation approach to numerically
solve those equations, which is an efficient discretization
scheme for dealing with such problems. The trapezoidal
approach is used to approximate the integral term because it
is simple and efficient in numerical integration. Theoretical
error estimates are obtained to evaluate the correctness of the
numerical solution, offering information on the effectiveness
and convergence behaviour of the suggested approach.

The correctness and efficiency of the numerical results
are also assessed by a series of calculations compared to the
corresponding analytical solutions. According to the results,
the Haar wavelet collocation approach is reliable and accu-
rate, accurately capturing the key features of the Fredholm
integro-differential equations and producing higher-precision
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numerical solutions with great accuracy.
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