Kirkuk Journal of Science Vol. 20, Iss. 3, p. 20-30, 2025

doi:10.32894/kujss.2025.162625.1228

A Numerical Fractional Spline for Solving System of Fractional

Differential Equations

Faraidun K. Hamasalh

Department of Mathematics, College of Education, Sulaimani Polytechnic University, Bakrajo Technical Institute,

Paywast J. Hasan ’,

Sulaimani, Irag.

@ CrossMark

*Corresponding author : ¥ faraidun.hamasalh@spu.edu.iq

Article Information

Article Type:
Research Article

Keywords:

Boundary-value problem, Gamma
function, Caputo fractional deriva-
tive, Riemann-Liouville fractional
derivative, convergence analysis,
errors estimation.

History:
Received: 9 July 2025

Abstract

Fractional-order differential equations are fundamental in diverse
scientific and engineering fields, including population dynamics, optimal
control, and physics. This paper presents a non-polynomial spline
method for their numerical solution, establishing a linear system of
algebraic equations in the representation of three-term recurrence
equations, which is solved using an elimination algorithm. The maximum
error estimations and the order of convergence for each example
demonstrate the success and core contribution of the method and
its performance is demonstrated through numerical and graphical
examples. There is a thorough explanation of a mathematical procedure
provided, as well as graphical and numerical examples solution for
several examples. Results confirm that the proposed approach achieves
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superior accuracy and reliability compared to existing techniques.

1. Introduction:

In many branches of mathematics, science, and engineer-
ing, solving systems of equations is essential. These systems
are particularly vital for testing and validating engineering
designs, as well as for modeling and simulating physical pro-
cesses [1]. Among them, boundary value problems (BVPs)
with various boundary conditions have become effective tools
for describing real-world scenarios and thus constitute a sig-
nificant area of study. BVP systems of different orders are
widely used in modelling population dynamics, brine tank sys-
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tems, compartment modelling, water pollution, chemostats,
cardiac arrhythmias, drug interactions, nutrient transport in
aquariums, economic forecasting, train logistics, electrical
circuits, coupled spring-mass systems, helicopter logging, and
structural responses to earthquakes [2].

Recently, second-order BVP systems have garnered con-
siderable attention. Researchers have developed numerous
numerical methods to achieve accurate and efficient solu-
tions. For instance, Khalid et al. [3] investigated both linear
and nonlinear systems using the reproducing kernel method.
Dehghan and Saadatmandi [4] and Gamel [5] proposed Sinc-
collocation strategies, while Lu [6] introduced a variational
iteration method. Modified and Laplace-based homotopy anal-
ysis methods were applied to nonlinear systems by Bataineh
et al. [7] and Karwan et al. [8], respectively.

Spline-based methods have become increasingly popular
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in the numerical solution of BVPs due to their high accu-
racy and flexibility. Gupta and Chaurasia [9], Dehghan and
Lakestani [10], Aniley, Duressa [11], and Khuri and Sayfy
[12] addressed generalized BVP systems using a collocation
approach, while Heilat et al. [13] applied B-spline scaling
functions to second-order systems. Goh et al. [14] extended
cubic uniform B-splines to solve singular BVPs effectively.

Foundational concepts related to linear algebra, which
underpin the construction and analysis of these numerical
methods, are thoroughly discussed in the works of Fay and
Milici et al. [15], [16], as well as Chaurasia et al. [17].
Further, the theoretical background of fractional calculus and
its application to differential equations is elaborated in the
work of Lay et al. [18], demonstrated the efficiency of spline
techniques in handling higher-order and engineering-related
boundary value problems.

Fractional differential equations (FDEs) have gained promi-
nence due to their ability to model memory and hereditary
properties in various physical phenomena. However, there re-
mains a noticeable gap in the literature regarding the solution
of systems of fractional differential equations. This gap was
one of the primary motivations for undertaking the present
work. In this context, the application of non-polynomial spline
functions offers a promising direction. Faraidun and Hea-
dayat [19] introduced non-polynomial splines to fractional
problems, while Emadifar et al. [20] and Abbas et al. [21] ex-
tended spline-based approaches to fractional and initial value
problems, respectively.

In light of the above, this study aims to address the defi-
ciency in existing research concerning the numerical solution
of systems of fractional differential equations by introduc-
ing an efficient method based on the new non-polynomial
fractional spline interpolation with continuity equation.

2. Basic Definition:

The non-polynomial spline offers a powerful approach to
improving numerical schemes for systems of differential equa-
tions. In this section, we discuss the fundamental concepts
associated with non-polynomial splines and fractional deriva-
tives, including specific definitions such as the Caputo and
Riemann-Liouville derivatives.

2.1 Definition Gamma function [16]: The Gamma function
I'()is defined as:

F(p):/ e xPldx
0

2.2 Definition Caputo fractional derivatives [16]:

The Caputo fractional derivative operator D% of order
o € R of a function u € C™; [a,b] and & €[m-1, m], me N
is defined as:

Thus, for = m , meN, and ucC™ [a,b], we have aCDg u(t) =
u(t) and SDZ' u(t) = u™ (t). The Caputo fractional derivative
of order « is given by:

D) = gy [ =0

['(n—
2.3 Definition Riemann-Liouville fractional derivatives [16]:

The Riemann-Liouville fractional derivative operator &£ D%
of order & > 0,m = [at], ceiling function, and u € C", [a,b],
is normally defined as:

KDE = Dl u(r)

where ,if o =m, m € N,and u € C™ [a,b], we have kLD u(t)
=u™ (v).

3. Modified of Non-Polynomial Spline In-
terpolation:

In the non-polynomial fractional spline interpolation, the
newest formula derivative at a given point is used in construct-
ing the interpolating polynomial. To compute the derivatives
at the selected nodes, we use an approximation based on finite
differences, as well as a Taylor series expansion. This provides
an efficient way to handle fractional derivatives without requir-
ing complex symbolic calculations. We can set a framework
of an equally spaced partition of an interval [a, b], dividing
into N equal sections asa =Xy < X] < X2 <......... < X »=b,
6 =kh, h = (b-a)/N, and k is free parameter as follows:

p;(x) =A1 jcosk(x — x;) + Ag )

ey
+A3J‘(X—Xj)1/2+A4jaj =0,1,2,... 7Nj

The interpolate conditions: pjxj.1) = s.j+ 1), p;(xj) = s;,
2 2 ;
p§ )xj =M;, andp& ) X(jr1) =Mj+1).

3.1 Theorem:

Uniqueness of Non-polynomial Interpolation with Frac-
tional Order Let x;i_, be distinct uniformly spaced nodes in
the interval [a,b], and let s(x) be a function such that it’s
fractional derivative D? p(x) and s(x) exists at each x; and
continuous on [a,b], then there exists a unique interpolating
function p; (x).

Proof: Using the non-polynomial spline interpolation in
equation 1, with the four conditions after some simplifications
by taking the derivative and interpolating at each x;, we can
obtain the following coefficients:

kZ(Sj—Sj+1) —Mj—492M(j+ 1)—|—eeMj+4Mj0269
k2(—cosO +2 —e? +460%cos0 —402¢Y)

Alj:

K*(s;—5j+1) — cosOM; +M; +46%cosOM; — 4M ;1 6>

Ayj=
2 k2(—cosO +2 —e? +402cos0 —4602¢9)
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A —43/2[(2c050€° — 05O — e® )M+ (2 — ¥ — cos8)M 11 + (cosO — e®)k%s; + (e — cos@)kzs(j +1)
v (—cosO +2 —e® +402cos0 — 462¢9)

22511+ (40%cos0 — 4629 — cosO — e9)k%s; + (cos® — e® — 40%cos0 — 460%®)M; +86°M
k2(—cosO +2 —e® +4602%cos0 —402¢9)

Agj =

K (sj—s5j01) —M; —40°M ;1 +eOM; +4M ;628
Pilx) = k2(—cosO +2 —e? +46%cos0 — 4020
K*(sj—5j+1) — cosOM; +M; +46%cosOM; —4M(j+ 1)6? .
k2(—cosO +2 —e? +46%cos0 —462¢9) ¢
413/2[(2c050e® — 050 — e®)M; 4 (2 — ¥ — cos0)M 11 + (cos8 — e )k%sj + (e — cos8)k?s 41
(—cos6 +2 —eP +402c0s0 — 462¢9)
22511+ (40%cos0 — 46029 — cos0 — e9)k%s; + (cos® — e® — 40%cos0 — 460%e®)M; +86° M.
k2(—cos0 +2 —e® +46%cos0 — 462¢9)

cosk(x —xj)+

(x—=xj) _

(r—x)' 2+

Suppose two interplants p;(x) and p;z) (x) satisfy the condi-
tions, as found the above coefficients, since p(x) is a linear
combination of basis interpolation function at all nodes then
p; (x) is unique polynomial similar as [18], [19].

3.2 Matrix representation:

To express the equation 1 in the matrix form, we first need
to identify the variables and constants, and then structure them
into vectors and matrices. The given formula is:
LetD=K2(-cos O +2-¢? +4 02 cos 6 -4 02 ¢Y).
pj (X) = Ay cosk (x-X;) + Aaj eX(x-x;) + Az; (x-x))'/2 + Ay;

Where:
A K (sj—5j41) —M;—40°M; | +e®M; +4M;6%€8

1j — D
Ay — K*(s;—sj11) —cosOM;+ M, +40%cosOM; — 4M;, 1 62

/ D

2,32 (2cos0e® —cosO — €% )M+ (2 — €% — cos0)M i1 + (cos® — e®)k2s; + (e® — cosO)k?s 41
Asj=—4i2h -
A= 22511 + (402cos0 — 402€% — cosO — e )k%s; + (cos® — e® —40%cos0 —40%e9)M; +80°M 1,
D

Let’s rearrange Ay, Ayj, Asjand Agjinterms of sj, 8,41, Mj, Ay = % [k2 sj-k2 sj+1+(e9 +462 ee—l) Mj-492 M;1]

Mjir. 1 1.2 2 2 2
Agj= 5 [k*sj-k“sji 1 +(1-cosf +46°cosh) M; -46
Mt1]
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213/2
Let Ay =- #°7)
Azj=A [(cosO-e?)k? Sj +(e? - cos O)k? Sj+1+(2cos O ef -
cosf - ef) M;+(Q2- e? - cos0) M, ]

Ayj= % [(492 cos0 - 402 €% - cosh - ee) K2 sj+2 K2 Sj+1 +
(cos - €9 - 462 cosO - 40% ) M; + 862 M 1]

Now, let’s define a column vector for the independent vari-
ables:
Sy
Sj+1
M;
Mj

V=

V= (Sjsj+leMj+l)

And a row vector for the functions of x:
F(x) = [cosk(x-x ) ek=xj) (X-X,) 12

We can express p; (x) in the form p; (x) = F(x)MV or a
similar matrix multiplication. However, given the complexity,
it’s more straightforward to define coefficient matrices for
each term. Let’s define coefficient matrices for s;, sj 1, M;,
M for each part of the equation.

pj(x) =(ausj+ 0osjr1+ a3Mj+ oauMj1)cosk(x —x;)+

(Busj -+ Basj1 + BsM; + BaM 1))+

(Visj+ Bosji1 + BM; + M) (x—x))' >+

(015 + Sas(j+ 1)+ 3M;+ My 1)

(2)
Where:
o = ﬁ)az: _67% _ ee+46269_1),and054 _ _L@z
D D D D

B — %2,[32 _ —kngB _ 1—cos9;;49260s9’and

4 2
By = ,%Yl = Ay (cos® — )2, = A (€ — cos0)K?,

73 = A1 (2c050e® — cos® — ), Andy, = A (2 — €% — cosh).

2k?
81 = k*(46%cos® —40%¢® —cos6 —%)D, 8, = o
5 = cosO — % —402%cos6 — 46%° and$, g
D D
Sj
- | S+t
LetC= M;
Mj

Then we can write eq(2) as:

pj(x) = A-Ccosk(x —x;) + B-Cef~%) 4 T C(x —x;)(1/2)
+A-C

Where A, B, 7, A are row vectors containing the respective
coefficients:

A=[on o304, B=[B1 B B3 Bal. T=[n 1y nl
A=1[8; 6, 33 64]

This form highlights the dependence of p; (x) on the param-
eters s;, $j+1, Mj, M1 through a linear combination, with
coefficients that depend on k, 6, h, and x. To express this in a
more compact matrix form, we can define a matrix K(x) such
that p; (x) = K(x)C.

(ot cosk(x —x;) + Bk =) -y (x —x;)1/2 + &)
(ancosk(r—xj) + Boe ) + =) V2 + &)
K@= K—x;)) 12
(arscosk(x —x;) + B3k ) 4y (x —x;) /2 + 53)
(otycosk(x —x;) + BaekW ) -y (x — x;)1/2 + 84)

Thus, p; (x) = K(x)C, where K(x) is a 1x4 row vector
and Cis a 4x1 column vector.

Sj
Sj+1

M;
Mj

Let C= be the vector of unknown parameters.

Let the vector basis functions of x be:
(cosk(x —x;)

P (x—x;j)

(x—xj)'/2
1

Now, we need to define the coefficient matrix that multiplies
these basis functions and the parameter vector.

pj (X) = 7 Ly Ceosk(x-x;) + g Ly Ce¥=%1) + % L; C(x-

)P+ L5 C
Where:
L; =[k®-Kk2 (e +46% ¢ - 1)-46?]
Ly = [k% - k% (1 - cosO + 462 cosO) - 462]

L3 =[(cosO - e9) K2 (ee - cosB) K2 (2(:0SGe6 -cosO - ee)
2 - ef - cos0)]

L4 = [(462 cosO - 462 e? - cosO - e?) k2 2k? (cosh - e? -
462 cos6 - 462 %) 86%)]
This can be more compactly written as:
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pj (x) =Mx)C

Where M(x) is a 1x4 row vector whose elements are functions
of x:

M(x) = [m; (x) mp (x) m3 (x) my (x)]

m; (x)= [k{—z cosk(x-x;) + 1’% eklr—xj) 4 I]%/: (cosB - e?) k2 (x-

¢

xj)% +K2/K, (462 cosh - 402 e - cosh - ef) k2

my (X) = - 1"% cosk(x-x)- % ekb—xj) 4 ,I% (e? - cosf) k2 (x-

X)) + & (2K2)

944620 1)
K

B 2
m;3 (x) = ( 1—cos0+46-cos0) ek(X_x-f)

cosk(x-x;) + ( X

cos8—e® —40%c0s6—462¢%)
K.

+ % (2cos 0 e? - cosh - e?) (x-xj)% 4!

my (X) = - % cosk(x-x;) - % ekb=xj) 4 % (2-¢? - cosf)(x-

862
K.

1
Xj)2 +

K (sj—5j+1) —Mj—40°M; 1 +e®M; +4M;6%€%)
k2(—cos0 +2 —eP +46%cos0 — 4602¢9)

pj(x) =

(K*(sj—sj+1) —cos@Mj+Mj+462c0s9Mj—4M(j+ 16%) ,

K=xj) _

(k2(—cosO +2 — e? +402cos0 — 402¢9)

413/2[(2c050e® — cos — e® )M+ (2 — €® — cos0)M 1 + (cosO — e®)k2s; + (€ — cosO)k>s 1

This representation is the most direct matrix form for p; (x).

4. Continuity Condition for Fractional
Spline Scheme:

This modification presents an iterative formulation based
on the given formula of theorem 3.1 for solving system of dif-
ferential equations. The basic ideas and concepts are adapted
from foundational methods introduced in [20], and further de-
veloped using fractional polynomial techniques, with Caputo
derivatives [16].

Let the fractional spline range polynomials p; (x) form
the basis, where j=0, 1,...,N and 6 = kh at the knots , apply
the half derivative continuity conditions of spline functions to
acquire the following relations:

P} ) =pj1 17 (x)

And evaluating all the coefficients of equation 1, we obtain

cosk(x —x;)+

(—cos0+2 —ef +402c0s0 — 402¢9)

(x—x}/z—i—

(22541 + (40%cos0 — 4628 — cos0 — e9)k%s; + (cosO — e® — 40%cos0 —40%e® )M, +80° M )]

(k2(—cosO +2 — e® +40%cos6 — 402¢9)

Compute the fractional derivatives, onto the basis p(x) to form each x;, we obtain the iterative formula:

Sjiy1—28j+sj1 = —l/kz[OCMj_H—i-ﬁMj—‘r’yMj_l]
j=1,...,N—1.

Where,

~ (14+2)462 + (4 — 2% — 2c050)/2,/T63/
14+ V242270320 —21/2,/703/2c056

b=

1—e® — (e +14+2)40% — V2 —4y2/70%2 — (462 — 1 — 4/760%/?)\/2c056 .

3)

nd

1+V2+2V2/703/2e0 —21/2\/703/2c0s6

(14462 +2/2/m03/%)e® + /24 (46% — 1 —4/70%2% +2./m63/%)\/2c056 — 1

1+V2+ 2\/5\/%93/269 — 2\@ﬁ93/2cos9
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These formulas enable the construction of a compact itera-
tive formula that encapsulates fractional derivatives, consistent
with methods from [15], [20] and [21].

5. Theoretical Analysis:

The convergence analysis reveals that the proposed non-
polynomial spline method demonstrates superior accuracy
and stability compared to the classical Taylor series, particu-
larly for functions with higher-order derivatives or localized
behavior. While the Taylor series relies on polynomial approx-
imations centered around a single point, the spline approach
captures the function’s behavior over intervals, allowing for
faster convergence with fewer terms. This makes the non-
polynomial spline especially effective for problems where the
Taylor series may diverge or require a high number of terms
to achieve comparable precision.

Lemma 5.1:

Let feC% ([a,b]) be a function with fractional smoothness
o €(a,b], and let p; (x) denote the non-polynomial spline-
type fractional interplant constructed from values f(x;) and
fractional derivatives D% f(x;) at nodes x;_,. Then the inter-
polation error satisfies:

|f" (x) = plm) (x)| < Co ()™, m =0,1,2.

where

1. h = max—x;-X; — is the maximum spacing between
the nodes,

2. (h) is the modulus of continuity of D* f,

3. Cis a constant depending only on ¢ and the interpola-
tion scheme.

Proof: The modulus of continuity of a function f, denoted by
o(f,8), is defined as:

o(f,8) =sup |f(x) — f(y)] Xy € [a,b] |x—y| < )
For fractional derivatives of f,define:

Wy (f,00) = sup [D* f(x) —D*f(y)|, ¢ € 0,1,2.

(x.y € [a,b] [x—y[ < 8)

We begin by expanding f(x) at each node x; using the Taylor
series with fractional remainder:

— f(x: 2 N/2 23 (s . , 4
f09 = ) + 75 Gox) PG () + ex) £ (x0) + 7
(x-x)2 £12) (%)) + Ra (x,%),

The error estimation of non-polynomial spline and ana-
lytic function is |p(x) — f(x)|, since|x — x;| <h and ®(|x —x;|)
< @(h), and letting x=x ;1 , to obtain:

1
Ips(x) = ()] = |k2(—c0s9 +2—e% +46%cos0 —402¢9)
[(kz(Sj —Sj+1) —Mj —492Mj+1 +€9Mj —|—4Mj92€6)COS9+
(kz(Sj - Sj+1) — COSGM/' +M/‘ + 926‘0S9M/' - 4M/'+1 62)697

((2c0s969 —cos8 —e® )M+ (2 — e —cosO)M 1+

(cos6 — ee)kzsj + (69 — cosG)kzsj+1)492+

2k%sj 11 + (467 cosO —40%e® — cosO — e )iPsj+
(cos® —e® —46°cos0 —40269)Mj + 892Mj+1]—
2h1/2 4n3/2 3 R

1/2 !
ﬁy/ +hy;+ NG +5y; (01|

. " "
Substitute s; =pj, sj+1 = pj+1, Mj=p;, Mjy1 =p;, and

v+

_ 1 . . _
® = K2(—cos8+2—e®+462c0s6—402¢9) ° then after simplifica

tion we get:

Ipi(x) — f(x)] = |1 (—86%€®cosOp; + (k*e® — K*cosO—

2012 )
Eli T

402%k2e® +40%k%cos0 + ZkZ)PjH) —[pj+

Y R
hpj+ﬁpj/ +7P;(91)]|

)
let o = —86%¢%c0s0, a3 = k?e® — k*cosO — 40°k*e
+40%k*cosO + 2k*Therefore :

[f(x) = p;(x)] = [E(x)| < Co(h)h?, h = max|x — x|
Vx=5D3 f(x)] < VA||D? £ and

|(x =) 3D3 f(x7)| < 3{|D3 ]|
and simplifying with constants C; = (0] 0 + ¢ 03 - 04),
Cy=(ay 03 -04), C3 = (ay a3 - 0g) C4 = (0 03 - 04) from
equation 4, independent h, and using Taylor expansion can be

write as:

|f(x)—p;(x)| =|E(x)| < Ch*w(h),whereCh* :Max(C]h% +
Col? + C3h+ C3h?).
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26 A Numerical Fractional Spline for Solving System...

Similarly, we can find error bound for the derivatives as fol-
lows:

1
k(—cos8+2—e®+402cos0—402¢9)

and p; +1» then after simplification we get:

o =

, also we expanded all pj|

opl/2 1)2
vz Pj

1P} (x) =, (x)| = [(010a + 0t103) p; + (01 03) +

/ " 3/2 /2 3/2 /"
(1ash = 1)p; + pj + (s = — Zhﬁpj/ +hp;(61) —
n/ Zp;l- (62)], then in particular, we obtain:

|p/j(x) — f (%) = |E(x)| < Ch3w(h), where Ch* = Max((oy

1/2 / 3/2
052+0610€3)Pj+((11053)l7,~/ +(onozh—1)p;+ (061053?\/5 -

20172\ 3/2
ﬁ)pi :

And similarly, can obtain to expanded p; 41 and simplify the
last step we get:

Pix) = f ()] < (o0 + 00— o) p; + (010 — 0t4)

(2n1/2 5)2

v pj +ala2hp;l(92)+a4hp;l’l(el) )

and simplifying with constants C; = (aj0p + 0 03 — 0tg),Co =
(a1 — 0),C3 = Qo + 04 from equation 4, independent
h, and can be write as:

w(pj,8) < (C1+Ch'1/2) + Csh)o(f,8) < Hh*o(f,

whereHh* = Max(Cy +Coh!/? +Csh).

6. Numerical Discussion:

To demonstrate the usefulness of the developed non-polyno-
mial spline, we solved two problems involving linear systems
of fractional-order boundary value problems. All computa-
tions for these problems were carried out using the Maple
software. The test cases confirm high accuracy and stabil-
ity, particularly for problems involving memory effects and
anomalous diffusion. Moreover, when the numerical solutions
of the result are carried out, the results are depicted in Figures
1 and 2, where the phase portraits are displayed for with the
exact solution regard to the governing for spline methods,
also Tables 1 and 2 show the fractional scheme’s numerical
results for a range of x values for and z;(x). The numerical
schemes’ consistency analysis is displayed in Tables 3 and 4;
the results show the total number of function evaluations indi-
cating the maximum errors. These findings validate fractional
non-polynomial spline interpolation as a reliable and practical
tool for obtaining numerical solutions to systems of fractional
differential equations.

Example 6.1 [22]: Consider the system of fractional dif-
ferential equations

D%(x) = - v(x) + z(x) + 2/(C(3-a)) x>~ ¢

D%(x) = v(x) - z(x) + % x2~% the exact solution is

3—a)
v(x) =x2%and z(x) = x? v(0) =0 and (0) =0, 0<x<0.1 ,h =
0.01, N =10?

Table 1. Numerical Solution of v;(x) to example 1 (=0.5)

and comparing in to Runge-Kutta Method.

X Exact Value [22] Approximate Value Runge-Kutta
0.01  0.0001000000 0.0003075147 0.000070
0.02  0.0004000000 0.0006769686 0.000322
0.03  0.0009000000 0.001160271 0.000787
0.04  0.0016000000 0.001791187 0.001456
0.05  0.0025000000 0.002597025 0.002327
0.06  0.0036000000 0.003601370 0.003399
0.07  0.0049000000 0.004825293 0.004673
0.08  0.0064000000 0.006288026 0.006148
0.09  0.0081000000 0.008007375 0.007823
0.1 0.0100000000 0.010000000 0.009699

Table 2. Numerical Solution of z;(x) to example 1 (a=1.5)

and comparing in to Runge-Kutta Method.

X Exact Value [22] Approximate Value Runge-Kutta
0.01  0.0001000000 0.0004283868 0.000310
0.02  0.0004000000 0.000988961 0.000738
0.03  0.0009000000 0.001650801 0.001375
0.04  0.0016000000 0.002424149 0.002215
0.05  0.0025000000 0.003320234 0.003257
0.06  0.0036000000 0.004349869 0.004500
0.07  0.0049000000 0.005523267 0.005944
0.08  0.0064000000 0.006850074 0.007588
0.09  0.0081000000 0.008339424 0.009434

0.1 0.0100000000 0.0100000000 0.011480

1/2) (x) = e/(2) + w(
w2 (x) = e/3) £ 2 w(x) - % Inn (w(x

X

2

_ex+L X _

x+1 "2

2

Example 6.2: [23] Consider a nonlinear system of fractional
delay differential equations

1 s

) -1

w(0) = 1, £(0) = 0, f(x) = In(x+1) w(x) = €%, h = 0.05, N = 10.
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Figure 1. The graph between approximate solution and exact solution of example 1.
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Figure 2. The graph between approximate solution and exact solution of example 2.
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Table 3. Numerical Solution of w(x) to example 2 and
comparing in to Runge-Kutta Method.

X Exact Value [23] Approximate Value Runge-Kutta

0.05 1.105170918 1.133234123 1.843276
0.1 1.221402758 1.276080586 2.478709
0.15 1.349858808 1.429550326 3.181429
0.2 1.491824698 1.594760605 4.012364
0.25 1.648721271 1.772946185 5.016704
0.3 1.822118800 1.965471691 6.235964
0.35 2.013752707 2.173845265 7.716756
0.4 2.225540928 2.399733664 9.501427
0.45 2.459603111 2.644978938 11.656660
0.5 2.718281828 2911616867 14.258881

Table 4. Numerical Solution of w(x) to example 2 and
comparing in to Runge-Kutta Method.

X Exact Value [23] Approximate Value Runge-Kutta

0.05  0.0487901642 0.03300774801 0.291621
0.1 0.0953101798 0.06775540997 0.626798
0.15  0.1397619424 0.1042124870 0.881327
0.2 0.1823215568 0.1423528917 1.156699
0.25  0.2231435513 0.1821541245 1.463927
0.3 0.2623642645 0.2235966260 1.796889
0.35  0.3001045925 0.2666632639 2.166354
0.4 0.3364722366 0.3113389227 2.594418
045  0.3715635564 0.3576101722 3.078762
0.5 0.4054651081 0.4054651081 3.653041

7. Conclusion:

This paper presents a useful numerical method for solv-
ing systems of fractional differential equations using non-
polynomial spline interpolation. The method incorporates a
Taylor series expansion based on the Caputo derivative for-
mula, with the solution curve spatially interpolated using the
Maple software. We compute the maximum errors between
the exact solution and the numerical approach, as shown in
Tables 1, 2, 3, 4 at uniformly distributed points x&[0, 0.1]
and x€[0, 0.5],with respect to the step size h, also in [23],
[22] comparing it to Runge-Kutta method, and the multiple
solutions have been obtained represented in Figures 1 and 2.
Consequently, the exact computations and the best approxi-
mate solutions for solving systems of FDEs are in both cases.
The method provides sufficient precision and demonstrates
innovation. Furthermore, the non-polynomial spline approach
is applied to two numerical examples, with graphs confirming
the accuracy and effectiveness of the method. The numerical

results of the proposed approach validate the theoretical anal-
ysis.
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