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Abstract

In this work, we find the results for the folded part projection of the
butterfly catastrophe model onto the control space, using methods from
catastrophe theory to obtain stability and the catastrophic behavior of
finite periodic solutions for some non-linear differential equations. Finally,
we have shown that a saddle-node bifurcation, which can be classified
as a butterfly mutation, accompanies butterfly surface folding.

1. Introduction:
Studying dynamical systems with two-dimensional phase

space, a limit cycle is a closed trajectory in phase space that
has the property that it contains at least one other trajectory
spirals either as the time approaches infinity or negative in-
finity. The Limit cycle is an isolated closed orbit in a system.
Which is stable (or attractive) if all neighboring trajectories
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get close to it. If not, we say it is unstable. Catastrophe theory
can explain several characteristics of the phenomena of dis-
continuous jumping which are very difficult to explain with
the help equations.

The Butterfly type Catastrophe Model is developed for sta-
bility analysis by graphing the Butterfly-Model for non-linear
differential equations, the bifurcation set, or the projection of
the folding part of the butterfly catastrophe model (in [1] the
projection of the folding part of the cusp catastrophe model)
onto the control space is always accompanied with the saddle-
node bifurcation. In catastrophe theory, rock blast failure
patterns plays a very primary role in theoretical analysis and
practical applications. Studying catastrophic problems such as

 https://doi.org/10.32894/kujss.2023.136973.1089
https://orcid.org/0000-0003-2896-1447
mailto:Essam_Raffik@ntu.edu.iq
https://creativecommons.org/license/by/4.0/)
https://creativecommons.org/license/by/4.0/)


On the Butterfly Catastrophe Model and Stability of Finite Periodic Solution... 32

equilibrium points, catastrophic manifold, capacitance, jump
phenomena... etc.

has been of great interest for a long time due to its increas-
ing applications in physical, biological, and social sciences.
Some writers, such as K. D. Arrow Smith and K. L. Taha [2],
L. Cesari[3], P. Hartman [4], K. L. Hale [5], W. Hirsch and S.
Smile [6], C. Hayashi [7], E. J. Marsden and M. McCracken
[8]. M.N. Mohammad [9], M.N. Murad Kaki[1],[10], W. D.
Jordon and P. Smith [11], E. C. Zeeman [12] they made their
valuable contributions to the study of some aspects (points of
equilibrium, catastrophic model, limit cycles, periodic solu-
tions, stability (instability), phenomena associated with the
forced oscillations) of problems.

The aim of this work is to find limit cycles for the averaged
system of the non-linear differential equations and their sta-
bilities and semi-stabilities for the Butterfly catastrophe with
six-degree non-linear differential equation, where [1] used
Cusp catastrophe with a four-degree non-linear differential
equation.

2. Systems rise from non-linear differential
equation NLDE:
NLDE considered here from the model:

y
′′
=−w2

0y+α f (x,y,y′), (′= d \dx) (1)

Where α is the ε− parameter and f is of period 2π

ω
con-

cerning x, the linear form of Eq. (1) is not interesting because
the catastrophic behavior appears only in the foregoing non-
linear differential equation, and then we are proceeding to get
the approximate solution of (1) for this purpose:

Let y′ = v, (2)

Now equations (1) & (2), yields

v′ =−w2
0y+α f (x,y,y′) (3)

In order the set of equations:

y = a(x)sin(wx)+b(x)cos(wx)

v = w[a(x)cos(wx)−b(x)sin(wx)]
(4)

must be a solution of equations (2) and (3), the conditions
below are met [1]:

a′ sin(ωx)−b′ cos(ωx) = 0 (5)

a′ cos(ωx)−b′ sin(ωx) =
α

ω
[βy+ f (x,y,y

′
)] (6)

αβ = ω
2 −ω

2
0 (7)

Hence Eqs. (5), (6), and (7) gives the dependent system
below:

a′ =
α

ω
{βy+ f (x,y,y′)}cos(ωx)

b′ =−α

ω
{βy+ f (x,y,y′)sin(ωx)}

(8)

Integrating Eqs. (8) concerning x, for 0 < x < 2π/ω , we get :

a′ = βb+µa−{χ2ar2 +χ4ar4 + . . .+χ2nar2n}
b′ =−βa+µb−{χ2br2 +χ4br4 + . . .+χ2nbr2n}−B

(9)

Whereas µ,β ,B and χ2,χ4, . . . ,χ2n are the real parame-
ters and r =

√
a2 +b2 is the Amplitude. Which is the average

system we want and which we get from the general form (1).

3. Catastrophic Manifold CM:
Since the stationary points of Eqs. (9) comes true if

a′ = b′ = 0, so, equating to zero on the right-hand side of this
system to zero and after some simplifications, we get:

[µr− (χ2r3 +χ4r5 + . . .+χ2nr2n+1)]2 +β
2r2 −B2 = 0, (10)

Where we used polar coordinate transformations:
a = r cosφ ,b = r sinϕ . Putting ζ = r2 and if we perform the
appropriate change of coordinates, Eq. (10) can be reduced to
the standard form of some types of catastrophes, as well we
may find some standard form of (10) for CM.

ζ
m +u1ζ

m−2 +u2ζ
m−3 ++um−1 = 0

This is our desired equation, where m= 2n+1 . We define
a function F

′
so that, we can find the non-linear dynamic

model as follows after integrating concerning ζ :

F ′(ζ ) =−(ζ m +u1ζ
m−2 +u2ζ

m−3 + . . .+um−1) (11)

The following is the canonical form for the potential function:

F(ζ ,u1,u2, . . .) =
1

m+1
ζ

m+1 +
u1

m−1
ζ

m−1 + . . .+um−1ζ

(12)

Resulting from the averaged system (10), where if n = 2, im-
plies that m = 5 and F is the potential function of the butterfly-
type catastrophe, which can be represented as:

F(ζ ,u1,u2,u3,u4) =
1
6

ζ
6 +

1
4

u1ζ
4 +

1
3

u2ζ
3 +

1
2

u3ζ
2 +u4ζ

(13)

Kirkuk U. J. Sci. Stud. Vol. 18, Iss.1, p 31-34, 2023



On the Butterfly Catastrophe Model and Stability of Finite Periodic Solution... 33

The stationary points of F are provided by

∂F
∂ζ

= ζ
5 +u1ζ

3 +u2ζ
2 +u3ζ +u4 = 0 (14)

We take F and ζ also to be functions of the control variables as
well, in this case,u1,u2,u3,u4 .The non-linear dynamic model
is considered as:

F(ζ ) =−(ζ 6 +u1ζ
4 +u2ζ

3 +u3ζ
2 +u4ζ ) (14a)

Also, let us look into the Lipsanos function of this dynamic.
Construct a function: F(ζ ,u1,u2,u3,u4) =

1
6 ζ 6 + 1

4 u1ζ 4 +
1
3 u2ζ 3+ 1

2 u3ζ 2+u4ζ , via the butterfly catastrophe [13]. Some-
one saw that (14 a) is a Lyapunov function with:

dF
dt

=− (ζ 5 +u1ζ
3 +u2ζ

2 +u3ζ +u4)
2 < 0 ⇔ ζ

5

+u1ζ
3 +u2ζ

2 +u3ζ +u4 ̸= 0
(15)

Therefore, in this section, the non-linear dynamical solu-
tion (14 a) is asymptotically stable. For the cusp catastrophe
see [1], for which, if n = 1, then m = 3 in Eq. (10). The
condition of three limit cycles is:

∆ = 4u3
1 +27u2

2 < 0 (16)

The region’s boundary (for one limit cycle or three) is defined
as:

4u3
1 +27u2

2 = 0 (17)

Furthermore, we have the following propositions:
Proposition 3.1 There are two asymptotically stable solutions
and two unstable solutions for any non-linear dynamical sys-
tems that arise from NLDE when ∆ < 0 in Eq. (16).
Proposition 3.2 The occurrence of the folding of Butterfly
Catastrophe is almost always accompanied by saddle-node
bifurcation.

4. Conclusion:
We have shown that the saddle-node bifurcation can be

classified as a Butterfly type catastrophe and we have investi-
gated asymptotically stable solutions and unstable solutions
for any non-linear dynamical systems that arise from NLDE.
We have also shown that the occurrence of the folding of But-
terfly Catastrophe accompanies by saddle-node bifurcation.

Acknowledgement:
Thanks due Dr. Mohammad Nokhas Murad for suggest-

ing the problem and his great assistance in carrying out this
work.

Funding: None.

Data Availability Statement: All of the data supporting the
findings of the presented study are available from correspond-
ing author on request.

Declarations:
Conflict of interest: The authors declare that they have no
conflict of interest.

Ethical approval: The manuscript has not been published or
submitted to another journal, nor is it under review.

References
[1] M.N. Murad Kaki. On the cusp catastrophe model and sta-

bility. General Mathematics Notes, 2(2): 73–82, 2011.
[2] K. D. Arrow Smith and K. L. Taha. Vector Fields

Mecanica. 18, 1983.
[3] L. Cesari. Asymptotic Behavior and Stability Problems in

Ordinary Differential Equations. Academic Press, New
York, 2nd revised edition, 1963, doi:10.1090/S0002-9939-
1960-0121542-7.

[4] P. Hartman. A lemma in the theory of structural stability
of differential equations. Proceedings of the American
Mathematical Society, 14(1963): 568–578, 1963.

[5] K. L. Hale. Ordinary Differential Equations. John Wiley
and Sons, New York, 2nd edition, 1960.

[6] W. Hirsch and S. Smile. Differential equations, dynamical
systems and linear algebra. 1974.

[7] C. Hayashi. Nonlinear Oscillations in Physical Systems.
McGraw Hill, New York, (1964), Reissue, Princeton Univ.
Press (1984).

[8] E. J. Marsden and M. McCracken. The Hopf Bifurcation
and its Applications, volume 19. Springer-Verlag, New
York, Heidelberg Berlin, 1976.

[9] M.N. Mohammad. Treatment of Phenomena of Instabil-
ity by Method of Catastrophe Theory. Master’s thesis,
University of Baghdad, Baghdad, Iraq, 1985.

[10] M. N. Murad Kaki. Mathematical catastrophe with ap-
plications. General Mathematics Notes, 11(2): 35–46,
2012.

[11] W. D. Jordon and P. Smith. Nonlinear Ordinary Differ-
ential Equation. Oxford University Press, 2nd edition,
1989.

[12] E. C. Zeeman. Catastrophe theory: Selected papers. 1977.
[13] M. N. Murad Kaki. Non-linear dynamics and cusp catas-

trophe. Journal of College of Education, University of
Al-Mustansiriya, (5): 101–110, 2013.

Kirkuk U. J. Sci. Stud. Vol. 18, Iss.1, p 31-34, 2023

https://doi.org/10.1090/S0002-9939-1960-0121542-7
https://doi.org/10.1090/S0002-9939-1960-0121542-7


On the Butterfly Catastrophe Model and Stability of Finite Periodic Solution... 34

�
éJ
¢

	
mÌ'@ Q�


	
«

�
éJ
Ê

	
�A

	
®
�
JË @

�
HBXAªÖÏ @

	
�ªJ. Ë

�
èXYjÖÏ @

�
éK
PðYË@ ÈñÊm

Ì'@
�
éK
P@Q

�
®
�
J�@ð

�
é
�
�@Q

	
®Ë @

�
é
�
KPA¿ h.

	
XñÖ

	
ß Èñk

�
�

KA
	
¯

�
�J


	
P̄ ÐA�«

.
�
�@QªË@ , ¼ñ»Q» ,

�
éJ
ËAÒ

�
�Ë@

�
éJ

	
J
�
®
�
JË @

�
éªÓAm.

Ì'@ , ¼ñ»Q»
�
éJ

	
J
�
®
�
JË @

�
éJ
Ê¾Ë@ ,

�
HAJ.�Am

Ì'@
�
é�Y

	
Jë Õæ�

�
¯

Essam Ra f f ik@ntu.edu.iq : Èð

ñ�ÖÏ @

�
IkAJ. Ë @

�
é�C

	
mÌ'@

�
�Q£ð I. J
ËA�@ Ð@Y

	
j
�
J�AK. Õºj

�
JË @ ZA

	
�
	
¯ úÎ«

�
é
�
�@Q

	
®Ë @

�
é
�
KPA¿ h.

	
XñÖ

	
ß 	áÓ ø



ñ¢ÖÏ @ Z 	Qm.

Ì'@  A
�
®�@


l .
�

'A
�
J
	
K A

	
KYg. ð ©

	
�@ñ

�
JÖÏ @ ÉÒªË@ @

	
Yë ú




	
¯

.
�
éJ
¢

	
kCË@

�
éJ
Ê

	
�A

	
®
�
JË @

�
HBXAªÖÏ @ 	áÓ Õæ�

�
®Ë

�
èXðYjÖÏ @

�
éK
PðYË@ ÈñÊjÊË ú




�
GPA¾Ë@ ¼ñÊ�Ë@ð

�
éK
P@Q

�
®
�
J�B


@ XAm.

�'

B

�
é
�
KPA¾Ë@

�
éK
Q

	
¢
	
� 	áÓ

ú



	
æªK
 AÓ ñëð .

�
é
�
�@Q

	
®Ë @ i¢�Ë ù



£ ©Ó

�
é
�
®
	
¯ @Q

�
�Ó ,

�
é
�
�@Q

	
¯

�
èQ
	
®£ Aî

	
E

@ úÎ« Aê

	
®J

	
��

�
� 	áºÖß
 ú




�
æË @ð ,h. Qå�Ë @

�
èQj. « I. ª

�
�
�
�

	
à

@ A

	
J�
K. , ú



ÍA
�
JËAK. ð

. h. Qå�Ë @
�
èQj. « ú




	
¯ I. ª

�
�
�
� é

�
®
	
¯ @QK
 Õºj

�
JË @ ZA

	
�
	
¯ úÎ«

�
é
�
�@Q

	
®Ë @

�
é
�
KPA¿ h.

	
XñÖ

	
ß 	áÓ ù



¢ÊË ÉK. A

�
®Ë @ Z 	Qm.

Ì'@  A
�
®�@


	
àñºK
 AÓ AÖ


ß @X é

	
K @

.
�
éJ


KA
	
ªË @

�
H@P@YË@ ;

�
éJ
¢

	
kCË@

�
éJ
Ê

	
�A

	
®
�
JË @

�
HBXAªÖÏ @ ;

�
é
�
�@Q

	
®Ë @ ¡Ö

	
ß 	áÓ

�
é
�
KPA¿ ;

�
é
�
�@Q

	
®Ë @

�
é
�
KPA¿ h.

	
XñÖ

	
ß :

�
éË @YË @

�
HAÒÊ¾Ë@

. Yg. ñK
B : ÉK
ñÒ
�
JË @

. Èð

ñ�ÖÏ @

	
Ë


ñÖÏ @ 	áÓ AîD

.
Ê£ 	áºÖß


�
éÓY

�
®ÖÏ @

�
é�@PYË@ l .

�

'A
�
J
	
JË

�
éÔ«@YË@

�
HA

	
KAJ
J. Ë @ ©J
Ô

g
.
:
�
HA

	
KAJ
J. Ë @ Q

	
¯ñ
�
K

	
àAJ
K.

:
�
H@P@Q

�
¯@

. lÌ'A�ÖÏ @ ú



	
¯ H. PA

	
�
�
� ÑîE
YË ��
Ë é

	
K

@
	
àñ

	
®Ë

ñÖÏ @ Q

�
®K
 : lÌ'A�ÖÏ @ H. PA

	
�
�
�

.
�
éªk. @QÖÏ @ YJ


�
¯

�
I��
Ë Aî

	
E

@ AÒ» ,øQ

	
k

@
�
éÊj. ÖÏ AêÖß
Y

�
®
�
K ð


@
�
é£ñ¢

	
jÖÏ @ Qå

�
�
	
� Õ

�
æK
 ÕË :

�
éJ

�
¯C

	
g

B@

�
é
�
®
	
¯ @ñÖÏ @

Kirkuk U. J. Sci. Stud. Vol. 18, Iss.1, p 31-34, 2023


	Introduction:
	Systems rise from non-linear differential equation NLDE:
	Catastrophic Manifold CM:
	Conclusion:
	References

