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A Cubic Rank Transmuted Gumbel distribution (CTGD) in this
article is a new generalization of the Gumbel distribution based on a
cubic ranking transmutation map. Examined are the cubic transmuted
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waiting time at a bank is described and Wheaton River flood, and the
fit has been compared with Gumbel distribution (GD) and transmuted
Gumbel distribution (TGD). The results show that the proposed model

provides a superior fit than transmuted Gumbel distributions and Gumbel
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1. Introduction:

The Gumbel distribution is named after Emil Julius Gumbel
(1891-1966), who described the distribution in his original
writings. The Gumbel distribution is a special illustration
of the generalized extreme value distribution (also known as
the Fisher-Tippett distribution). It is sometimes referred to
as the double exponential distribution and the log-Weibull
distribution [1]. Perhaps the most frequently used statistical
distribution for engineering challenges is the Gumbel distribu-
tion. It is sometimes referred to as the type I extreme value
distribution. Flood frequency analysis, network engineering,
nuclear engineering, offshore engineering, riskbased engi-
neering, space engineering, software reliability engineering,
structural engineering, and wind engineering are a few of its
latest application areas in engineering.

Over fifty applications are included in a recent book by
Kotz and Nadarajah [2] that describes this distribution and
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includes information on accelerated life tests, earthquakes,
floods, horse racing, rainfall, queues in supermarkets, sea
currents, wind speeds, and track race records (to mention just
a few). It is one of four EVDs that are frequently used. The
other three are the Generalized Extreme Value Distribution,
the Weibull Distribution, and Frechet Distribution.

The Gumbel, Frechet, and Weibull families, commonly
known as type I, type II, and type III extreme value distribu-
tions, have been combined into a single family of continuous
probability distributions called the generalized extreme value
(GEV) distribution. The probability density function (PDF)
and the cumulative distribution function (CDF) for Gumbel
distribution are defined as follow:

1 -z
g(Xip,0) = —e 1) 1)
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z:()%),xe&c,u >0
and
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Some extensions of the Gumbel distribution have previously
been proposed. The Beta Gumbel distribution, Nadarajah
et al.[3], the Exponentiated Gumbel distribution as a gener-
alization of the standard Gumbel distribution introduced by
Nadarajah [4], and the Exponentiated Gumbel type-2 distribu-
tion, studied by Okorie et al.[5].

Transmuted Gumbel type-II distributton with applications
in diverse fields of science by Ahmad et al. [6], presenting
Transmuted exponentiated Gumbel distribution (TEGD) and
its application to water quality data of Deka et al. [7], and
transmuted Gumbel distribution (TGD) along with several
mathematical properties has studied by Aryal and Tsokos
[8] using quadratic rank transmutation. Quadratic rank trans-
muted distribution has been proposed by Shaw and Buckley
[9]. A random variable X is said to have a quadratic rank
transmuted distribution if its cumulative distribution function
is given by:

F(x) = (1+4)6() ~A[GWP, 4] < 1 3)

Differentiating (3) with respect to x, it gives the proba-
bility density function (pdf) of the quadratic rank transmuted
distribution as:

f) = ¢ (1+4) —=24G(x)], [A] < 1 )

where G(x) and g(x) are the cdf and pdf respectively of
the base distribution. It is very important observe that at A
= 0, we have the base original distribution. The family of
quadratic transmuted distributions shown in (3) expands any
baseline distribution G(x), increasing its applicability. Re-
cently, Rahman et al. [10] introduced the cubic transmuted
family of distributions. A random variable X is said to have cu-
bic transmuted distribution with parameter A if its cumulative
distribution function (cdf) is given by:

F(x) = (1—1) G(x) +3A[G(x)]> — 2A[G(x)]? (5)
with corresponding pdf
f(x) = g@)[(1—=21) + 6AG(x) — 6A G*(x)], x € R (6)

where A € [—1,1].

This paper is organized as follows, in Section 2 defining
the cubic transmuted Gumbel distribution. Statistical prop-
erties have been discussed such as the shapes of the density
and hazard rate functions, quantile function, moments and
moment-generating function, Characteristic Function, and cu-
mulant generating function in Section 3. Entropy was studied
in Section 4, and order statistics in Section 5. Section 6, we ad-
dress the parameters of the CRTG distribution via maximum
likelihood method.

A simulation study is carried out in Section 7 to assess
performance of suggested maximum likelihood estimators.
An application of the CTGD to two real data sets for the
purpose of illustration is conducted in section 8. Finally, in
Section 9, some conclusions are declared.
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Figure 1. Plots of pdf plots of the CTG distribution.

2. A new version cubic transmuted Gum-
bel distribution:

The cubic rank transmuted Gumbel distribution is defined
as follows: The CDF of a cubic rank transmuted Gumbel
distribution is obtained by using (2) in (5).

e N
F(x) =(1-2)e= 7 )32l p 0
_oafele TP

X—
(S

where x € R, u© > 0, and ¢ > 0, are a location and scale
parameters respectively, A € [—1,1] is shape parameter.

It is very important note observe that at value A = 0, the
cubic rank transmuted Gumbel distribution reduce to Gumbel
distribution according to the transmutation map. The probabil-
ity density function (pdf) of a cubic rank transmuted Gumbel
distribution is given by:

L+ 2 1) 1 6ret- T
o - (®)

—6Ale T

fx) =

where x € R, u,0 >0, A € [-1,1] Figure 1 and Figure 2, show

different selected values of the model parameters A, y and
o for the pdf and cdf of the cubic rank transmuted Gumbel
distribution.

3. Statistical Properties:

3.1 Shapes of the Density and Hazard Rate Func-
tions:

The reliability function of the cdf of distribution is defined

by R(x) = 1 — F(x). For the cubic rank transmuted Gum-
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Figure 2. Plots of cdf of the CTG distribution.

bel (CTG) distribution, the reliability function is given as:
SR S
R(X):l*[(lfl)e(—e (=5 ))+3l[e(_e (== ))]2

x—p

AL TP )

The hazard rate function can be written as the ratio of the pdf
f (x) and the reliability function R(x) = 1 — F(x). That is:

f(x)

) = B

then we can find the hazard rate function of GTF distribution
by (8) and (9):

=

h(x) =22 o+ 7 D j1-a)vorel
_ °
1-[(1-A)el=e o)

79_
]

J3afee TR op (e

The cumulative hazard function is defined by:
H(x) = —InR(x),
so the cumulative hazard function of the CTG distribution is:

x—pn
[}

(X Cx—p
H(x):—ln{l—[(l_l)e(e ( ))_’_31[6(,@ (55 ))]2

—2l[e(‘e_<x"”))]3]}

(11)
The reverse hazard function is:
_fx)
r(x) - F(X) (12)
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Figure 3. Plots of hazard function of the CTGD.

Using (12), we can write the reverse hazard function of CTG
distribution as

()

L5 12y p6rele T ) el
r('x) = 7)5*[1) 7)‘*}1)
(1-2)4+3A[e(=¢ O )22 fe(-¢ @ ]2

Figure 3, show the Hazard function of the cubic rank trans-
muted Gumbel distribution for different values of parameters
A, wand o.

3.2 Quantile Function:

Here we will compute the quantile function of the cubic
rank transmuted Gumbel probability distribution.
Theorem 3.1 Let X be random variable from the cubic rank
transmuted Gumbel probability distribution with parameters
0>0,u>0and —1 <A < 1. Then the quantile function of
X, is given by:
x;, =t —olog(—logB(q,1)) (14)
Proof. To calculate the quantile function of the cubic rank
transmuted Gumbel probability distribution, we substitute x
by x, and F(x) by g in (7) to get the equation

xg—H _xg—p
(fat (Mt

g=(1-2) "7 13 ik

. (15)

— 22T
. -(4z)

Then, we solve the equation (15) for x,. So, lety = el )
Thus, (15) becomes
g=(1-2A)y+31y*—22y°
and hence,
24y} =34y> — (1= A)y+¢g=0 (16)
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leta=2A,b=-3A4,c=(—1+A)and d = q, then the equation
(16) becomes

ay} +by* +cy+d=0

Then,
%
: 3 +\/4§3+52)
y= b B 3@51 + < ’ b 17)
i 332

" 3a

3a (5+m)
where & = —b? + 3ac, & = - 2b + 9abc - 27ab*d, and d = q.
Now, let the function B(g, A )be defined by:

Blga)— -2 V%

3 348+ (/487 + £2)}
+@ﬁwﬂﬁ+§ﬁ

32
Hence,
_(YqH
y=e TN 2 B(g. 1) (18)

Take natural Logarithm to both sides to get:

Xg—H

_ei( ‘ ):logB(quJ

Then, we have the equation

Xq=u—oclog(—logB(q,1))

putq=0.25,0.50, and 0.75 in (14) to obtained the first quartile,
median and third quartile respectively.

Quantiles for selected parameter values for the CTG distribu-
tion are shown in Table 1.

3.3 Moments and Moment-generating function:
3.3.1 Moments function:

Theorem 3.2 Let X ~ CTGD(u, o, A). Then the rth moment
of is given by:

s = Yo a-n Zr@ e

J=0 J

—a 9/ -a
(2 F(a))—6lw(3 l“(oc))ha:l
(19)
Proof. The ' moment is given by
E(x") = /oo X f(x)dx (20)

Table 1. Inclusion and Exclusion Criteria for Related

Publications.
(0,1, 1)

u (0.5,05,-05) (153,00 (54,05 (2,3,-1) (0.1,0.5,1)
0.1 0.0151 1.7490 0.6894 0.8609 0.4511
0.2 0.1883 2.2862 2.3242 1.4955 0.4779
0.3 0.3415 2.7216 3.5730 2.0722 0.4987
0.4 0.5024 3.1311 4.7050 2.7521 0.5178
0.5 0.6833 3.5498 5.8326 3.7330 0.5367
0.6 0.8867 4.0076 7.0439 4.8873 0.5567
0.7 1.1152 4.5464 8.4552 5.9569 0.5795
0.8 1.3912 5.2499 10.2981 7.1174 0.6083
0.9 1.8003 6.3756 13.3111 8.7726 0.6524

Substituting from (8) in to (20),

x—[L x—j

E(x) :/ A (B RNV

2y

Using the transformation y = ¢~ (7o
(AR

Then dy = =< (UG )dx, x=u - ology

With substitution by this transformation in (21) then:

0
E(x") :/ [u— Glogy]’éye_y[(l —A)+61e™” —6?Le_2«"]
;Gdy
y
0

== / [u—ology]"e?[(1—A)+6Ae™ —61e >]dy

o

- /w[u —Glog Y [(1—A)+64e™ —6Ae2]dy
0

Now, we calculate [4 — 6logy]” using binomial

:‘/Omjzr‘b(—l)j (:) o’/ u I logy)le?[(1—A)+6Ae™
—6Ae”|dy

=zx—nf()am“* 71(1— ) logyle™ + 64 flogy
Jj=0 j 0

e 2 —6A[logy)e>]dy

using Gamma integration:

oo aj ro0 8]
chll r_—y :7/ o—1 7)':7'1—~
/Ot logyl'e™dy =57 | 177 e™ =5 5I(a)
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"= 3 —1)/ ' —F 6A
FY Y
(27 (@) 64 5 (37T (@) | o = 1

The mean and variance can be easily obtained by using r = 1,
2 in Eq. (19) such that:

rOay =1, 1) = -y and T?

-7+
where ¥~ (0.5772 is the Euler Mascheroni constant [11].

3.3.2 Moment Generating Function
Theorem 3.3 The moment generating function M,(¢) of a
random variable X ~ CTGD (u, o) is given by:

© .r T r k
=L 5y (k)c"u’ =) g o2
k k
2 27T () 6 e (37T () [ Ja = 1
(22)

Using series expansion of e*

M, (1) = Xn: i—r'/:xrf(x)dx = zn: i—r’E(xr)

r=0"" r=0""

O A (s

ok ok
—a _
+6AW(2 I'a))— 6&87( T(a)||la=1
Some moments for selected parameters values in order
(o,u,A): (VD): (1,0, 0.5), (V2): (1.5, 3, 1), (V3): (2, 1.5,
0.7), (V4): (2, 3, -1) and (V5): (0.5, 0.5, -0.5) are given in
Table 2, where CV, SD, CK, and CS represent the coefficient

of variation, standard deviation, kurtosis, and skewness, re-

spectively and 3D plots of kurtosis and skewness for the CTG
distribution are given in Figure 4 and Figure 5. We observe
that:

» When the parameter A is fix, the kurtosis and skewness of
CTGD decrease as ¢ decreases.

* When we fix the parameters p, the skewness and kurtosis of
CTGD decrease as ¢ decreases.

Table 2. Moments for Selected Parameters for CTG

Distribution.
Vi V2 V3 V4 V5
E(X) 0.18413872 0.0012319141 0.08432721 0.05696914 0.26488573
E(X2) 0.11711591 0.0010517312  0.05923564 0.04077740 0.16895885
E(X?) 0.08504845 0.0009192204 0.04576221 0.03183581 0.12298493
E(X*) 0.06647332 0.0008171177 0.03731107 0.02613115  0.09640258
E(X%) 0.05443340 0.0007358141 0.03150427 0.02216664 0.07918527
E(X®) 0.04602701 0.0006694404 0.02726512 0.01924883  0.06715645
SD  0.03983899 0.0006141780 0.02403304 0.01701063  0.05828806
CV  0.03510047 0.0005674239 0.02148672 0.01523900 0.05148284
CS 003135916 0.0005273367 0.01942862 0.01380168  0.04609728
CK  0.02833227 0.0004925753 0.01773050 0.01261213  0.04172973

CTGD(c, 1, 0.5) CTGD(s, p, - 1)

50 2k

45

o 20

35 18

30

- 16
14

Figure 4. Plots of kurtosis and skewness for the CTG
distribution at various parameter values.

3.4 Characteristic Function:
The cubic transmuted Gumbel distribution’s characteristic
function theorem is stated as follows:

Theorem 3.4 Assume that the random variable X have the
CTGD (u, o, A), then characteristic function, ®,(¢), is

& i)y N ok
w()-% 5 kzo<1>’<(k>cku -2 5@
* *

FOA S (27T (@)~ 625 (3T ()| [o =1

(23)
Wherei=+v—1andte R

3.5 Cumulant Generating Function:
The cumulant generating function is defined by:

Ky (t) =log, My(t)
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Figure 5. Plots of kurtosis and skewness for the CTG
distribution at various parameter values.

Cumulant generating function of cubic rank transmuted Gum-
bel distribution is given by:

ot 35 ()t -2) )

k k
+67La—( I'a))— 6}»;—( F(a))]m—l

da
(24)

4. Entropy:

4.1 Rényi Entropy:

If X is a non-negative continuous random variable with pdf
f(x), then the Renyi entropy of 6 order (See Renyi [12]) of X
is defined as,

Hg(x) = =5 1og/

Theorem 4.1 The Rényi entropy of a random variable X ~
CTGD (u,0), with A # 1 and A # 0 is given by:

x)]%dx,¥6 > 0,(8 # 1) (25)

Hg(x

o i -
log[ZZc’j,kSN 17/1) 5}1
J=0k=0 °

5+]+k 5}

Proof. Assume X has the pdf in (8). Then, can compute.

=

o ){(1—/1)—1—616(‘6_( °

T [
—62 [e(-“"””]Z]

) =ge 20
(26)

By the general binomial expansion, we have:

{“‘M%Ae(—e”"” 62~ ”‘WT
~£(Jo-

by the Binomial Theorem,

5 —J {6&6

(28)

{(11)+67Le X"““sx[e(—e”f’““]Zr
EQr g
S5 £ () (Yot v
J=0k=0 \j

(29)

(1—2)% AT~ Uthe )

8\ /i
Letc(j, k, 8) = ( ) ( )(—1)k6j, then:
i/ \k

(30)
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To find Hg(x), we substitute from (30) in (25).

— )%
31

Hg(x) log[ZZCJ,kS A1

j=0k=0

‘/“’[ (B4t (e )+ (—8(55)] 4y
0

We can evaluate the integration by using the transformation

/°° e[*(5+j+k)(ef<%))+(75 (x;u) )]dx
0

©  ew)
=/ (o)
0

x—

1ety=e’( ¢
< oo

(32)

=
), and 8 > 1, then dy = =< = )dxand0<y

incorporating gamma integration and transformation in (32)
we get,

76/ y‘s_
0

After solving the integral, we get the Rényi entropy of the
CTGD (u, o) by substitute from (33) in (31).

(s)

1= +itky gy — g 7/
‘ SR T ER AL

(33)

log{ZZchél’ 2)%- W

Jj=0k=0

Hs (x)

I'(s)
(8§ +j+k)S

4.2 g-Entropy:

Havrda and Charvat [13] established the concept of g-entropy.

It is the Shannon entropy’s one-parameter generalization.
According to Aman Ullah [14], the g-entropy is:

1 00
In(q) = ﬁ[1 _/0 f(x)4dx], where g >0, and q # 1

(34)

Theorem 4.2 The g-entropy of a random variable X ~ CTGD
(U, o), with A # 1 and A # 0 is given by:

I (q) [ ZZ]:C],kqlfl—A) 11

Jj=0k=0

I'(q) }
(q+j+k)

Proof. To find Iy (g) , we substitute (30) in (34).

4.3 Shannon Entropy:
In a non-negative continuous random variable X with pdf
f(x), the Shannons entropy [15] is defined as:

—— | rtotog(£)dx

The Expansion of the Logarithm function will be used below
(Taylor series at 1),

H(f) = E[~log [(x) (35)

S =)™

Y ="

m=0

log(x) = , x| <1 (36)

The Shannon entropy of a random variable X ~ CTGD (u, o
), with A # 1 and A # 0 is given by:

™ 1 —1
)n(n)mc(j’k7”+l)6n

I(n+1)
(n+1+j+k)t!

n+1

© m J
Hf) =Y Y Y Y (-1
m=1n=0 j=0k=0 37)

K AJ(1— Ayt

Proof. Using the logarithm function’s expansion (36)

st = T (1 CO 0"

m=1

and by Binomial Theorem,

log(f(x)) = (38)

¥ 3 ()

m=1n=0

To compute the Shannon’s entropy of X, substitute from (38)

in (35).
= [ seostr@ne= - [“5w ¥ ¥ (-1
X <:l> %f"(x)dx
.= L
0= BRI (a0
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substituting from (30) in (39), to get:

n-[ ¥ ()“ficmﬂ

m=1n= j=0k=0
X A (1 = ATl e “CFN (- (1)
o m n+l j m\ '
D=L YT R () petihns )i <1
m=1n=0 j=0 k=0 n
A)ri- ,/ — (1K) () ) (— (1) BB gy

Now, we use (33) to fined the value of the integration, so,

DI )"(m)l ( !
= -1 —C ],k,l’l-i—l i
m=1n=0 j=0k=0 n/ M o
I'(n+1)
(n+1+j+k)t!

) AT (1— )=

5. Order Statistics:

Let X1, Xo, ..., X;, be a random sample of size k from the CTG
distribution with parameters it >0, 6 >0,and —1 <A < 1
From (Casella and Berger [16]), the pdf of the k th order
statistics is obtain by:

n

fey (1) = k( )ﬂx) P — P (40)

k

Let X be the k th order statistic from X ~ CTGD (u, o) with
A # 1 and A # 0. Then pdf of the k th order statistic is given
by:

e ( ) 11— Py
- (k) 1[%(—1>f(jk) P

6. Maximum Likelihood Estimation
(MLE):

Assume X1, X3, ..., X;, be random sample of size n from CTGD
(1, o) hen the likelihood function can be written as:

l(u,0,1) Hf X;) =
n PRNTE (MR
i=1 LO
_6A[e<e<""a”>>}2}]
Then

1 no(Ni—H %
H1,0,2) =ge SO O, 1) 4 62

e*(xi;# ))}2:|

) _6A [~
(41)

Then, the Log likelihood function of a vector of parameters
given as,

logl(p,0,1) :long(x,-) = —nlogo +log
i=1

(e Tl 1) | Yo
i=1
{(1 _A)+6re T _en
[e(e(XiG“))]2:|
Then
log [(u,0,A) = —nlog(oc) — i(xi ; H —&-e*("\.’;”))

(fih)

+X7, log [(l —A) 46 ) Al

(“"i*#

9] ))]2

Differentiate w.r.t parameters i, ¢, and A we have.

Kirkuk U. J. Sci. Stud. Vol. 18, Iss. 1, p 1-15, 2023
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dlogl —n hWxi—H Nn ity xi—
=—+ —)e ‘o +
u c l; o2 l; o2 l;
6/16(*6’(”5”>>e*<x"5”)X’%z”—lz/ler(%))e*xi;“)x’%z”
Xi—H1 Xi—
(1=2)+60el-¢ T ) _gpel-2e" o)
(43)
<2e<"f;’"‘>) <e<'*";”>)
8logl_z’1: —1—6e¢ + 6¢
90 B (1-2)+6hel—T0) _gpel-2 )
(44)

By setting the above nonlinear equations to zero, we can use
the maximum likelihood method to estimate the unknown
parameters.

dlogl(u,o,A) _o
au

dlogi(n,0,4) _ 4 (45)
do

dlogl(u,o,A) _0
oA

and solving them simultaneously. Therefore, in order to ac-
quire the numerical solution to the nonlinear equations, can
utilize statistical software. using quasi-Newton procedure,or
computer packages/ softwares such as R, SAS, Ox, MAT-
LAB and MATHEMATICA, We can calculate the maximum
likelihood estimators (MLEs) of parameters (1, o, 1).

7. Simulation Study:

In this section, simulation results are presented for different
sample sizes of n = 100, 200, 350, 500 and 600 to check
the consistency and accuracy of the maximum likelihood es-
timators (MLESs) for each CTG distribution parameter. The
simulation was conducted N = 1000 times, and the root mean
square errors (RMSEs), average bias (A Bias), and mean esti-
mations were assessed. The mean estimations are displayed
in Tables 3 and 4 together with the corresponding RSMEs and
A Bias. The A Bias and RMSEs for the estimated parameter,
say,0 are respectively given as:
A Bias (6) = #76
and,

RMSE () = /£ 0-9°

Table 3. Monte Carlo simulation results from the CTG

distribution.
(3,5,-0.6) (1.5,3,1)
Parameter  Size Mean RMSE A Bias Mean RMSE A Bias
100 29683869 0.3110686 -0.031613  1.4124447 0.192761 -0.0875553
200  2.9653400 0.1943333  -0.034660 1.4413629 0.145419  -0.0586371
c 350 2.9641475 0.1468471 -0.035852  1.4566656 0.118423  -0.0433344
500  2.9681908 0.1186902 -0.031809 1.4646765 0.097915 -0.0353235
600  2.9689276  0.1092767 -0.031072  1.4720971  0.083501  -0.0279029
100 5.0102457  0.3529291 0.0102457 3.0234538  0.115822  0.0234538
200 5.0231378  0.2558181 0.0231378 3.0188759  0.087923  0.0188759
350 5.0211866  0.1845014 0.0211866 3.0141480 0.065121  0.0141479
500  5.0100060 0.1508559 0.0100059 3.0069940 0.052363  0.0069939
600  5.0048706  0.1389350 0.0048706 3.0027601  0.047960  0.0027601
100 -0.6095491  0.3137271  -0.009549  0.8807370  0.285499  -0.1192630
200 -0.6248843 0.2207617 -0.024884  0.9219822  0.205312 -0.0780178
A 350 -0.6364474 0.1655242  -0.036447 0.9390858 0.161835 -0.0609142
500 -0.6270135 0.1357510 -0.027014  0.9512945  0.138257  -0.0487055
600 -0.6267492  0.1190665 -0.026749  0.9621599  0.112930 -0.0378401

Table 4. Monte Carlo simulation results from the CTG

distribution.
(2,3,0.5) 0.6,0.7,-1)
Parameter ~ Size Mean RMSE Bias Mean RMSE Bias
100 1.9211129 0.334973  -0.07889  0.6136448  0.0530885  0.01364479
200 1.9606604 0.279166  -0.03934  0.6109134  0.0332931  0.01091343
c 350 1.9747647 0.234069  -0.02524  0.6097105  0.0256254  0.00971053
500 1.9758268 0.202012  -0.02417  0.6084322  0.0211626  0.00843219
600 1.9777069 0.190073  -0.02229  0.6082418  0.0195105  0.00824184
100 3.0176148  0.199861 0.017615  0.7042277  0.0678061 0.00422769
200 3.0145087 0.152499  0.014509  0.7053112  0.0494191  0.00531121
i 350  3.0109260 0.113605  0.010926  0.7040583  0.0348269  0.00405834
500 3.0024912  0.098721 0.0024912  0.7012063  0.0282066  0.00120633
600  3.0000571  0.090058 0.0000571 0.7003267  0.0268318  0.00032672
100 0.3537058  0.459299  -0.14629  -0.864626  0.2423701  0.13537376
200 0.4147267 0.363055  -0.08527  -0.903963  0.1624097  0.09603691
A 350 0.4392960  0.302085  -0.06070  -0.929262  0.1190584  0.07073831
500 0.4479509 0.258816  -0.05205  -0.938991  0.0989909  0.06100867
600 0.4540239 0.232968  -0.04598  -0.941779  0.0912471  0.05822062

From the results, we can verify that as the sample size
n increases, the mean estimates tend to be closer to the true
parameter values, whereas the RSMEs and A Bias decrease
for all parameter values.

8. Applications:

In this section, the Cubic Rank Transmuted Gumble Distribu-
tion (CTGD) is applied on two data sets as follows:

Data Set 1: The data set consists of observations on the
amount of time a customer waited (in minutes) before receiv-
ing service from a bank. Ghitany et al. [17] . The data is: 0.8,
08,13,15,18,19,19,2.1,2.6,2.7,29,3.1,3.2,3.3,3.5,
3.6,4,4.1,42,42,43,43,44,44,4.6,4.7,4.7,4.8,4.9,
49,5,53,55,57,57,6.1,6.2,6.2,6.2,63,6.7,69, 7.1,
7.1,7.1,74,76,7.7,8, 8.2, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5,
9.6,9.7,9.8, 10.7,10.9, 11, 11, 11.1, 11.2, 11.2, 11.5, 11.9,
12.4, 12.5, 12.9, 13, 13.1, 13.3, 3.6, 13.7, 13.9, 14.1, 15.4,
15.4,17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19, 19.9, 20.6,21.3,
21.4,21.9, 23,27, 31.6,33.1, 38.5.

Data Set 2: The second data set that was acquired [18] relates
to the data are the exceedances of flood peaks (in m3/s) of the
Wheaton River near Carcross in Yukon Territory, Canada: 1.7,
2.2,14.4,1.1,04,20.6,5.3,0.7,1.9,13,12,9.3, 1.4, 18.7,
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8.5,255,11.6,14.1,22.1, 1.1, 2.5, 144, 1.7, 37.6, 0.6, 2.2,
39,0.3,15,11,7.3,229,1.7,0.1, 1.1, 0.6, 9, 1.7, 7, 20.1, 0.4,
2.8, 14.1, 9.9, 10.4, 10.7, 30, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5,
34,119,215, 27.6,36.4, 2.7, 64,41.5,25,27.4, 1, 27.1,
20.2,16.8,5.3,9.7,27.5,2.5, 27.

Using R software to execute model parameter estima-
tions and goodness-of-fit tests, the CTG distribution was com-
pared to other existing models. The goodness-of-fit mea-
sures used for model performance comparison are, (-2.%Z(0)):
where is .Z(0) the maximum value of log-likelihood func-
tion, AIC (Akaike Information Criterion), AICc (Corrected
Akaike Information Criterion) and BIC (Bayesian informa-
tion Criterion). Graphical plots such fitted densities, empirical
cdfs, hrfs plots, Kaplan-Meier, and TTT plots were used to
examine the Model fit was also investigated. Furthermore,
the Kolmogorov-Smirnov (K — §) statistics and associated
p-values were obtained along with the Cramer-von Mises
(w*) and Andersen-Darling (A*) statistics. A very good fit
of the model to the data is shown by reduced values for all
three goodness-of-fit indicators. Large p-values also indicate
a good fit for the model, which is another benefit. The new
CTG distribution was compared to the Gumbel distribution
(GD) , transmuted Gumbel distribution (TGD), with pdf

x—j X—L

fro= e CFH N [(142) 226l )]

Table 5. Descriptive Statistics of Data Set 1, 2.

Data mean Median Skewness Kkurtosis

Setl 9.89 8 1.479 5.7559

set2  12.204 9.5 1.504 6.3199
8.1 Datai:

In a bank, the waiting time (in minutes) before the customer
received service For the datal, this subsection includes param-
eter estimates (standard errors in parenthesis), goodness-of-fit
statistics, plots of the fitted densities, empirical cdf, hrf graphs,
probability plots, Kaplan-Meier and TTT plots

The CTG distribution fit the data the best, as shown in Fig-
ure 6, Figure 7, and Figure 8. According to the fitted density,
the CTG distribution can handle skewed data. In datal, the
estimated variance-covariance matrix for the CTGD model is
given b

0.149 0.072  0.057
0.072  0.249 —0.024
0.057 —0.024 0.086

and the 95% confidence intervals for the model parameters
are given by o € [4.29F0.756], u € [7.18F0.979], and A €

[~0.715F0.755]

Table 6. MLE’s of the parameters and respective SE’s for
various distributions for Data Set 1.

Distribution Parameter Estimate SE

u 7.18082  0.38553

CTGD o 429210  0.49963

A -0.71534  0.29316

u 7.57178  1.06169

TGD c 5.29926  0.64624

A 0.27170  0.31391

GD u 6.80551 0.52627

o 497704 0.41531

Table 7. MLE’s of the parameters and respective SE’s for
various distributions for Data Set 1.

Model  -2L (6) AIC BIC AICC w= A* K-S P-value

CTGD 628.8966 634.89 642.65 635.15 0.0641 0.4218 0.0639 0.819

TGD 6324556 638.46 64621 638.71 0.0931 0.6016 0.0764 0.617

GD 633.1347 637.14 64230 637.26 0.1018 0.6581 0.0788  0.578

In Table 7, we compare the CTG model with the TG, and
G distributions. Its noted that the proposed model has the low-
est values for the AIC, AICC, W* and A* statistics among all
fitted models (except BIC for the GD), as well as the highest p
value. So, the CTGD can be chosen as the best model among
the competing distributions studied in this article.

Data2: Wheaton River flood data

For the data2, this subsection includes parameter esti-
mates (standard errors in parenthesis), goodness-of-fit statis-
tics, plots of the fitted densities, empirical cdf, hrf graphs,
probability plots, Kaplan-Meier and TTT plots.

The CTG distribution fit the data the best, as shown in
Figure 9, Figure 10, and Figure 11. According to the fit-
ted density, the CTG distribution can handle skewed data. In
data2, the estimated variance-covariance matrix for the CTGD
model is given by

0.506334 0.372909 0.11991
0.372909 0.733727 0.06072
0.119911 0.060722 0.08869

and the 95% confidence intervals for the model parameters
are given by
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o € [6.446F1.39], 1 € [7.34F 1.679], and
A € [-1F0584]

Table 8. MLE’s of the parameters and respective SE’s for
various distributions for Data Set 2.

Distribution Parameter Estimate SE
u 7.34024  0.85658
CTGD o 6.44583  0.71157
A -1.00000 0.29782
u 7.89765 1.70109
TGD o 8.55889 1.08914
A 0.20997  0.29933
u 6.96837  1.00925
GD c 8.18927 0.81851

Table 9. Goodness-of fit statistics using the selection criteria
values for Data Set 2.

Model ~ -2L (6) AIC BIC AICC w* A* K-S P-value

CTGD 526.3687 532.3687 539.1987 532.7216  0.18981 1.32803  0.13048  0.1722

TGD  538.4016 544.4016 5512316 544.7545 0.27258 1.859597 0.1556  0.06123

GD 538.8729 542.8729 547.4262 543.0468 0.275508 1.875759 0.15777  0.0555

From the results in Table 9, CTG distribution performed
better than any other model. It had the lowest values for
—2logL, AIC, AICC, BIC, W*, A*, and K-S, as well as the
highest p-value when compared to competing models across
for Wheaton River flood data. Also These plots indicate that
the CTG distribution provides a better fit than others models
considered for both data.

9. Concluding Remarks:

This article examines the cubic rank transmuted Gumbel
(CTG) distribution, a novel generalized distribution. The
distribution’s hazard function, quantile function, moments,
distribution of the order statistics, and entropy are among the
structural aspects that are examined. The model parameters
are estimated using a technique called maximum likelihood
estimation. To investigate the performance of the CTG
distribution, a Monte Carlo simulation analysis was carried
out. The importance and potential of the CTG distribution is
demonstrated by examples from two real life data sets.
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