

Existence Solution of Volterra Hammerstein Equation in L^p Space

Mahmood Kamil Shihab

Department of Mathematics, College of Education for Pure Science, Kirkuk University,
Kirkuk, Iraq.

Mahmoodkamil30@uokirkuk.edu.iq

Abstract

In this paper we use the fixed-point theorem of Latrach, Taoudi and Zeghal under some conditions to find a solution for Volterra_Hammerstein integral equation in the Banach space $L^p([0, m], R)$. We use this fixed point theorem with new assumptions.

KeyWords: Volterra-Hammerstein equation, Fixed point theorem, Weakly compact.

DOI: <http://doi.org/10.32894/kujss.2019.14.3.5>

وجود حل لمعادلة فولتيرا- هامرستين في الفضاء L^p

محمود كامل شهاب

قسم الرياضيات ، كلية التربية للعلوم الصرفة ، جامعة كركوك ، كركوك ، العراق

Mahmoodkamil30@uokirkuk.edu.iq

الملخص

استخدمت مبرهنة النقطة الصامدة للاتراش وتودي وزيكال تحت بعض الشروط للحصول على حل لمعادلة فولتيرا هامرستين التكاملية في فضاء بناخ $(L^p([0, m], R))$. حيث اننا استخدمنا مبرهنة النقطة الصامدة هذه مع شروط جديدة.

الكلمات الدالة: معادلة فولتيرا - هامرستين، نظرية النقطة الصامدة، المترافق بشكل ضعيف.

DOI: <http://doi.org/10.32894/kujss.2019.14.3.5>

1. Introduction:

This paper studies Volterra_Hammerstein integral equations in the Banach space $L^p([0, m], R)$. We get a solution for Volterra-Hammerstein integral equation:

$$u(t) = h(t) + \int_0^t k(t, s)f(s, u(s))ds , \quad t \in [0, m] \quad (1)$$

Where $m > 0$ is fixed. Here $u(t)$ takes values in the space $L^p([0, m], R)$. Note $h: [0, m] \rightarrow L^p([0, m], R)$, $f: [0, m] \times L^p([0, m], R) \rightarrow L^p([0, m], R)$ and $k: [0, m] \times [0, m] \rightarrow R$. In this study we investigate the solution of Volterra-Hammerstein integral equation in $L^p([0, m], R)$ using fixed point theorem of K. Latrach, M.A. Taoudi, A. Zeghal [1]. We assume that the integral $\int_0^m u(s)ds$ exists.

Equations of Hammerstein-type play an important role in automation and in the network theory and in the optimal control system [2].

Equation of Hammerstein-type was studied by many authors. Aref Jeribi, Bilel Krichen and Bilel Mefteh found a solution for equation (1) by using Krasnosel'skii type theorem [3]. Mustafa Nader gave conditions that ensure the existence and the uniqueness of the solution for equation (1) in the L^p space [4]. Authors in [5-8] found sequences converged to the exact solution of equation (1) under such assumptions.

2. Preliminaries:

At the beginning define the nonlinear operator

$$Nu(t) = h(t) + \int_0^t k(t, s)f(s, u(s))ds.$$

In the sequel we need the conditions below:

H1: If $(x_n)_{n \in N}$ is a weakly convergent sequence in $L^p([0, m], R)$, then $(Nx_n)_{n \in N}$ has a strongly convergent subsequence in $L^p([0, m], R)$.

H2: $\int_0^t \|k(t, s)f(s, u(s))\| ds \leq t\|u(t)\| \quad \forall t, s \in [0, m].$

H3: $a(t) \leq a(t) - h_0$, where $a(t) = \int_0^t \|u(s)\| ds$ and $h_0 = \sup(\|h(t)\| : t \in [0, m]).$

H4: $\int_0^t \|k(s, t)(f(s, u(s)) - f(s, v(s)))\| ds \leq M\|u - v\|,$

where $M > 0$.

H5: $T(h(t)) \neq 0, T\left(\int_0^t k(t,s)f(s,u(s))\right) \neq 0$ and $T(h(t)) \neq -T\left(\int_0^t k(t,s)f(s,u(s))\right) \forall t,s \in [0,m]$,

where T is any linear functional on $L^p([0,m], R)$.

If $u(t) = 0$ then the above conditions H1, H2, H3, H4 and H5 will be satisfied.

Theorem 1: ([1], Theorem. 2.1.) Let D be a nonempty closed convex subset of a Banach space X . Assume that $N : D \rightarrow D$ is a continuous function which satisfies (H1). If $N(D)$ is relatively weakly compact, then there exists $x \in D$ such that $Nx = x$.

Theorem 2: [9] If $f : A \rightarrow R$ satisfies the Lipschitz condition, then f is uniformly continuous on A .

Theorem 3: ([10], Theorem 3, Robert C. James). A bounded closed convex subset C of a Banach space is not weakly compact if and only if there is a positive number r for which there exists a sequence $\{z_i\}$ of members of C , and a sequence $\{f_i\}$ of linear functionals with unit norms, such that $f_n(z_i) > r$ if $n \leq i$ and $f_n(z_i) = 0$ if $n > i$.

3. Main Result:

We now in a position to give the following result:

Theorem 4: Under conditions H1, H2 , H3 , H4 and H5 the equation (1) has at least one solution.

Proof: the proof is based on theorem 1.

Define

$C = \{u(s) \in L^p([0,m]): \|u(s)\| \leq a(s) \text{ and if } u \neq 0 \text{ then } T(u) \neq 0\}$,

Where T is linear functional in $L^p([0,m], R)$. We can see the set C is nonempty because $0 \in C$.

C is closed bounded convex set. Indeed, since

$$\|u(s)\| \leq a(s) \Leftrightarrow -a(s) \leq u(s) \leq a(s)$$

$$\Leftrightarrow -\infty < -\int_0^s u(t) dt \leq u(s) \leq \int_0^s u(t) dt < \infty$$

This mean that C is closed and bounded, let u_1 & $u_2 \in C$, now we have to prove that for any $\alpha \in (0,1)$ and for every pair u_1 & $u_2 \in C$, $\alpha u_1 + (1 - \alpha)u_2 \in C$. Without loss of generality we suppose that $u_1 \leq u_2$ which implies that both α & $1 - \alpha$ are positive

$$\alpha u_1 + (1 - \alpha)u_2 \leq \alpha u_2 + (1 - \alpha)u_2 = u_2,$$

and

$$\alpha u_1 + (1 - \alpha)u_2 \geq \alpha u_1 + (1 - \alpha)u_1 = u_1.$$

Therefore $\alpha u_1 + (1 - \alpha)u_2 \in C$, hence C is convex set.

If one prove that $N: C \rightarrow C$, continuous satisfy H1, and $N(C)$ is relatively weakly compact then Theorem 1 guarantees equation (1) has at least one solution.

We start to show that $N: C \rightarrow C$. by using H2 and H3:

$$\begin{aligned} \|N(u(t))\| &= \left\| h(t) + \int_0^t k(t,s)f(s, u(s))ds \right\| \\ &\leq \|h(s)\| + \int_0^t \|k(t,s)f(s, u(s))\|ds \\ &\leq h_0 + t\|u(t)\| \leq h_0 + ta(t) \\ &\leq h_0 + a(t) - h_0 = a(t). \end{aligned}$$

Now by H5

$$T(N(u)) = T(h(t)) + T\left(\int_0^t k(t,s)f(s, u(s))ds\right) \neq 0$$

Therefore $N: C \rightarrow C$.

Now we prove $N: C \rightarrow C$ is continuous by H4:

$$\begin{aligned} \|Nu - Nv\| &= \left\| h(t) + \int_0^t k(t,s)f(s, u(s))ds - h(t) - \int_0^t k(t,s)f(s, v(s))ds \right\| \\ &\leq \int_0^t \|k(t,s)(f(s, u(s)) - f(s, v(s)))\|ds \\ &\leq M\|u - v\|. \end{aligned}$$

By theorem 2 $N: C \rightarrow C$ is uniformly continuous, therefore continuous.

Now we show that $N(C)$ is relatively weakly compact. Since $T(N(C)) \neq 0$ for all T is a linear functional, therefore by theorem 3 $N(C)$ is weakly compact and so it is relatively weakly compact.

4. Conclusions:

Equation of Hammerstein type has a solution under such assumptions. We get the same result that obtained by G. Emmanuele [11] but in different assumptions. The author assumed in [11] that f is a Caratheodory function such that F maps $L^1(D, X)$ into $L^1(D, Y)$ (where $(Fu)(\cdot) = f(\cdot, u(\cdot))$ and D is a compact subset of R^n), continuously, and k is a measurable function such that the functions $s \rightarrow k(t, s)$ belong to L^∞ and K (where $(Kv)(\cdot) = \int_D k(t, s)v(s)ds$) is a linear, continuous operator from $L^1(D, Y)$ into $L^1(D, X)$, where X, Y are finite dimensional Banach spaces and use the Schauder fixed point Theorem with conditions in [11]. But we assume that $h: [0, m] \rightarrow L^p([0, m], R)$, $u: [0, m] \rightarrow L^p([0, m], R)$, $f: [0, m] \times L^p([0, m], R) \rightarrow L^p([0, m], R)$ and $k: [0, m] \times [0, m] \rightarrow R$ and we use of Latrach, Taoudi and Zeghal fixed point theorem with conditions (H1-H5).

References:

- [1] K. Latrach, M. A. Taoudi, A. Zeghal, "**Some fixed point theorems of the Schauder and the Krasnosel'skij type and application to nonlinear transport equations**", Journal of Differential Equations, 221, 256 (2006).
- [2] V. Dolezale , "**Monotone operators and its applications in automation and network theory in: Studies in Automation and Control**", 3rd Ed., Elsevier Science pub., New York (1979).
- [3] Aref Jeribi, Bilel Krichen and Bilel Mefteh, "**Existence of Solutions of a Nonlinear Hammerstein Integral Equation**", Numerical Functional Analysis and Optimization, 35(10), 1328 (2013).

[4] Mustafa Nadir and Bachir Gagui, "A numerical approximation for solutions of Hammerstein integral equations in L^p spaces ", Sao Paulo Journal of Mathematical Sciences 8(1), 23 (2014).

[5] Abebe R. Tufa, H. Zegeye and M. Thuto, "Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type ", International Journal of Analysis and Applications 9(2), 129 (2015).

[6] Chih-Sheng Chuang, "Strong Convergence Theorems for Solutions of Equations of Hammerstein Type ", Journal of Applied Mathematics, 3(2) , 1 (2013).

[7] Yekini Shehu, "Strong convergence theorem for integral equations of Hammerstein type in Hilbert spaces", Applied Mathematics and computation, 231, 140 (2014).

[8] C. E. Chidume a, A. U. Bello, "An iterative algorithm for approximating solutions of Hammerstein equations with monotone maps in Banach spaces", Applied Mathematics and Computation, 303, 408 (2017).

[9] Robert G. Bartle and Donald R. Sherbert, "Introduction of Real Analysis", JohnWiley & Sons, Inc (2011).

[10] Robert C. James, "Weakly Compact Sets", Transactions of the American Mathematical Society, 113(1), 129 (1964).

[11] G. Emmanuele, "An Existence Theorem For Hammerstein Integral Equations ", Portugaliae Mathematica, 51, 607 (1994).