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ABSTRACT

Orbital maneuver transfer time is traditionally accomplished using direct numerical
sampling to find the mission design with the lowest delta-v requirements. The availability of
explicit time series solutions to the Lambert orbit determination problem allows for the total
delta-v of a series of orbital maneuvers to be expressed as an algebraic function of only the
individual transfer times. Series solution was applied for Hohmann transfer and Bi-elliptic
transfer and comparing between Hohmann transfer and Bi-elliptic transfer for long
distance. It has been concluded that Hohmann transfer is more appropriate when the ratio
of radius of final orbit to initial orbit (R) is less than 11.94.

The purpose of this work is to minimize total full requirements, as well known that no
refueling station in space, then using the computed Av for determining the mass propellant
consumed Am, at different specific impulse of the propellants, help us to carefully plane a

mission to minimize the propellant mass carried on the rocket.

Keywords: Coplanar Maneuvers. Series Solution. Hohmann Transfer Maneuver. Orbital
Maneuver Optimization.
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1. INTRODUCTION

Orbital maneuvers are transferring a spacecraft from one orbit to another. Orbital changes
can be dramatic, such as the transfer from a low-earth parking orbit to an interplanetary
trajectory. They can also be quite small, as in the final stages of the rendezvous of one
spacecraft with another [1]. Orbital maneuvering encompasses all orbital changes after
insertion required to place a satellite in the orbit that choose. Changing orbits requires the
firing of onboard rocket engines [2], [3]. Orbital maneuver optimization as a function of the
transfer time is traditionally accomplished using either classical calculus of variations
techniques for restricted cases, or by direct numerical sampling to minimize the magnitude of
the required changes in velocity vectors [4]. The orbit transfer maneuvers considered
accomplished by ideal impulsive velocity changes. It was assumed that the velocity required
achieving certain mission objectives could be attained instantaneously. The concept of an
impulsive velocity change can be exploited to provide an excellent rocket engine steering law
which is applicable for a wide variety of orbit transfers [5]. One of the important
characteristics of a space maneuver (and a space mission) is the change of characteristic
velocity needed to realize the maneuver/mission, the so-called delta-v (Av). Any rocket or
spacecraft possesses its ideal velocity- the maximal change of speed it can provide to its
payload using the fuel onboard. So, delta-v of any maneuver (and any mission in total) is
limited by the ideal velocity of the vehicle. As it has already been mentioned, characteristic
velocity should be treated as exponential cost of the mission in terms of mass. To provide
heavier payloads and more complicated mission, it is critical to use the limited reserve of
ideal velocity as efficiently as possible, thus seeking for maneuvers with smaller delta-v [6].
Orbital transfers are usually achieved using the propulsion system onboard the spacecraft.
Since the propellant mass on board is limited, it is very crucial for mission planning to
estimate the propellant required for every transfer. The overall need for propulsion is usually
expressed in terms of spacecraft total velocity change, or (delta-v) budget as shown in Figure
(1). The propulsion was assumed is applied impulsively, i.e. the velocity change will be

acquired instantaneously. This assumption is reasonably valid for high-thrust propulsion.
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Figure (1): delta-v budget [2].

Speed change needed for a particular change in orbit parameters. The direction and size of
the delta-v determines which orbit parameters are most affected, and by how much. The

general definition of delta-v is as follows:Av = fot |F|/m dt Where F is the instantaneous

thrust, m is the instantaneous mass of spacecraft and t the time from the start of the
maneuver/mission. The magnitude Av of the velocity increment is related to Am, the mass of
propellant consumed, by the formula Am / m = 1 — e@*/Usp 80) Where m is the mass of the
spacecraft before the burn, g, is the sea-level standard acceleration of gravity [1].

The problem of two position vectors and the time of flight between them are usually
known as Lambert's problem because Lambert first formed the solution [2]. In the Lambert
problem, the initial position, final position, and the desired time for the transfer between the
two positions is known. Solving Lambert’s problem should define the orbital elements of the
desired transfer orbit (allowing the calculation of the velocities at the initial and final
positions) [7]. The original Lambert's problem is one of the most important and popular topics
in celestial mechanics. Several important authors worked on it, trying to find better ways to
solve the numerical difficulties involved (Breakwell et al Battin; Lancaster et al; Lancaster &
Blanchard; Herrick; Prussing; Sun & Vinh; Taff & Randall; Gooding). It can be defined as:
"A Keplerian orbit, about a given gravitational center of force is to be found connecting two
given points (P; and P,) in a given time At"[8]. The Lambert problem may be expressed in
terms of the Lagrange trajectory equations, which equate the transfer time t to transcendental
functions of the unknown semi-major axis. Recently, time series solutions have been found to
solve all orbital cases of the Lambert problem by analytically reversing the functional
dependence of the Lagrange trajectory equations from a to t. The availability of the complete

set of time series solutions for the Lambert orbit determination problem allows for the total Av
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magnitude for a series of orbital maneuvers to be written as a single algebraic expression, an
explicit function of only the individual transfer times [9].

The purpose of this work is to minimize total full requirements, as well known that no
refueling station in space, then using the computed Av for determining the mass propellant
consumed Am, at different specific impulse of the propellants, help us to carefully plane a

mission to minimize the propellant mass carried on the rocket.

2. COPLANAR MANEUVERS

Coplanar maneuvers don't change the orbital plane, as the name implies, so the initial and
final orbits lie in the same plane. These maneuvers can change the orbit's size and shape and
the location of the line of apsides. Coplanar burns are either tangential or non-tangential. The
burns allowed doing two types of coplanar changes: Hohmann transfers (two tangential burns)
and general transfers (two non-tangential burns). Consider the simple tangential transfer of
Figure (2). The both orbits are tangent at the transfer point. As a result, the velocity vectors

are parallel, and then the required change in velocity has been directly found as:

Av = Ufinal — Ujnitial “*"** (l)

Av, " ;
71 =

\ O ,/’= \\ ‘// ‘\\ Q / \‘.\

/ ; \ ‘ //

" Final \\}/lui(inl

Figure (2): Tangential Orbit Transfer Theoretical approach [1]

The direction of firing can be determined by the sign of the change in velocity. For
instance, the left orbit in Figure (2) has a positive Av because the velocity is added in the
same direction as the original velocity vector. In the other orbit, the change in velocity is
applied opposite to the direction of motion, and the satellite slows down to the circular orbit
as shown.

The Hohmann transfer is the most energy efficient two-impulse maneuver for transferring
between two coplanar circular orbits sharing a common focus [1]. The resulting Hohmann

transfer orbit between two circular orbits is elliptical; the transfer between two elliptical orbits
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may be circular or elliptical depending on the geometry of the initial and final orbits. Walter
Hohmann proposed a theory which suggested the minimum-energy (and therefore most
efficient) transfer could be achieved between orbits by using two tangential burns. Although
his original work considered only transfer between circular orbits, other authors have
explored transfers between coaxially aligned elliptical orbits and concluded the transfer
energy was lowest using two tangential burns. The initial and final orbits will have velocities

as shown from Figure (3).

Final

Transfer

Figure (3): Hohmann transfer [1]

u

Vinitial = |7 l ~(2)
initia
u
= e 3
Ufmal rfinal ( )

The velocities of initial and final transfer orbits are

2p u
Utransa = J —_—e—— s ses e (4)

Tinitial Atrans

2p u
Utransb = \/ —_—— tee see e (5)

rf inal  Qtrans

The changes in velocity for Hohmann transfer are

Av, = Utrans, — Vinitial
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Avy = Ufinal — Vtrans, """ """ (7)

Av = |Avg,| + |Avg| o eee oo (8)

The semi-major axis of the transfer is readily defined, the transfer time, 7;.4ns fOr the
Hohmann transfer is simply half the orbital period of the transfer orbit

Tinitial + T final
atrans = 2 ......... (9)

3
a
Tirans = ptrzans =1 ’% (1())

If the pass from one circular orbit to another coplanar circular orbit is needed the radius of

which is significantly larger, a more economical alternative to Hohmann transfer is the bi-
parabolic transfer. It means that the spacecraft may be first send to the infinity providing it
with the escape velocity, and then with an infinitely small impulse return it back along a
parabolic path tangential to the target orbit [7]. A variant of the Hohmann transfer is a method
which actually performs two Hohmann transfers in series. Figure (4) shows the Bi-elliptic
transfer as a transfer into the transfer ellipse, T;,q5,, at point a, followed by a transfer into a
second transfer ellipse, T;4ns,, at point b, and a transfer into the final orbit at point c. There is
an intermediate circular orbit between the two elliptical transfer orbits. The middle velocity-
change was simplifying calculation by determining it using the two elliptical orbits, rather
than two separate circular orbits.

Figure (4): Bi-elliptic Transfer [1].
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The transfer time for the maneuver is now the sum of the two Hohmann-like transfer times.

3 3
’a /a
Ttrans — T %4_11- % (11)

Then:

Aerans, = r"”t+’+rb e (12)

And:

Atrans, = M e (13)

The bi-elliptic transfer can reduce the total Av necessary for the transfer.
Av = |Av,| + |Avp| + [Avg| oo eee e (14)

Where:

Avg = Uiranst, — Vinitial """ (15)

Avy = Utrans2, — Ytrans1, *°" """ (16)

AV = Vfinal — Veransz, vt 17)

3. SERIES SOLUTION OF LAMBERTS TIME FUNCTION

The Lambert problem may be expressed in terms of the Lagrange trajectory equations,

which equate the transfer time t to transcendental functions of the unknown semi-major axis

[9], [10]. Where the Lagrange coefficient functionsf,, g,,, f,, g, are given by:

f =1-— 1(1 — COS(AE)) ......... (13)
To
j;
g= (t—to)_ H(AE_sln(AE)) ......... (19)
. —vuasin(AE)
f — o (20)
g =1 _g(l _ COS(AE)) ......... (21)

The change in eccentric anomaly AE can be found by using the Lagrange parameters « and
B, depending on the type of orbit transfer. To obtain Lambert's Time Function the Integration

of energy equation for a two-body orbit produces
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- (22)

tzifs _rdr

Vi s J2r —12/a
Where r the radial distance between the two bodies, a is the semimajor axis, and t is the

time. Lambert's Time Function for an elliptic trajectory depends on the transfer angle and a

flight time less than the minimum energy transfer time as shown

= \/% [(a — sin a) + (ﬁ — sin ﬁ)] ......... (23)

To find the unknown semi-major axis a first define the quantity T = At/t, — 1 as a non-
dimensional time parameter, where At is the desired flight time and ¢t,, is the known parabolic

flight time between the two given position vectors

3
t, = g %{1 _ (S ; C)Z} ......... (24)

After some algebraic manipulation, Lambert's Time Function has been expressed by using

hypergeometric series definition for sin™! x and V1 — x2 [7]. Then Lambert's time function

could be expressed as [2]

. §<( <1"’3)3>) TN -

i=1

(597w,

@‘6333

The terms(x); are Pochhammer symbols, which are defined by (x); =x(x+ 1) ...(x +i —

D

To determine the semi-major axis, the reciprocal of the series may be found [10], then

Ai:

~
N
' )
—
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The B; coefficients can be treated as a vector, where B = QA
And the elements of Q@ could be found from the following recursive expressions [2]:
Qa1 = A7’
i—-1
Qun = Z Qi-x, j-1 ((=234.), 1<j<i
k=1

i-1

-1
Qun = z (A_1) Qi k+»DAw+1)

k=1
The total delta-v that required for transformation is the sum of the n vector differences. The
sum of the magnitudes of the total delta-v is then given by

total

z Av, = \/(XZn—l — X2n-2)% + (Van-1 — Y2n-2)* + (Zan-1 — Zan-2)% -+ (27)

n=1

Velocity and there component is given by

. 1 f

Kppoq = — Xppq — =Xy woeoeeees (28)
n n

. 1 f

Yon-1 = ayn+1 - é}'n """"" (29)
1 f

Zyp1 = —Zpi1 — _"Zn ......... (30)
n 8n

Xon = fnxn + gnjCZn—l """"" (3 1)

j'Zn = fnyn + gnj'Zn—l """"" (32)

Zy, = fnzn + gnZZn—l """"" (33)

The goal is how to minimize the Av to obtain the transfer orbit with less fuel consumed as

well as At is the time of transfer is not very long.

Let J is a function of the velocity vector v, therefore

J =J(Av) eeeeeee (34)

4. APPLICATION AND DISCUSSION
For coplanar transfer the vectors input data are (r;= 8839.683 km and r,= 18689.09 km)

and using the Lambert's theorem at a given flight time the velocity computed and given in
Table (1). There is a unique value for semi-major axis associated with the arc of conic section,

express the major axis in terms of transfer time to solve orbital cases, Table (2) show the
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computed velocity component and the total minimum Av by using the analytical optimization

with assistant of Matlab program. Table (3) show the computed (Am/m) at different I,.

Table (1): position vector for coplanar transfer

position vector components (km)

r; =6250.61+6250.6j+0k

r, =-183721-34281j+0k

Table (2): Velocity Computed at given flight time

velocity vector components (km/s) flight time (sec)

vy =-8.1351+4.05064j + 0.0 k
v, =-3.474651-4.7942] - 0.0k 3600

Av = 4.660351-8.84484j - 0.0k

Table (3): computed the minimum change in velocity for the transfer and the time meets it

velocity vector components (km/s) | Transfer time (sec) | @fpa(deg) = & (km?2/s?)

v, =-8.760931+3.66464 j+ 0.0k

= < = 3302 -22.875 -3.799
v, =-4.190571-5.00941]+0.0k

Av = 457036 1 - 8.67405 j—0.0 k

Table (4): Specific impulses and the change in (Am/m)

(Am/m) Propellant I, (sec)
0.9936 Cold gas 50
0.5817 Solid propellant 290
0.4262 Liquid oxygen/liquid hydrogen 455
0.66679 Monopropellant 230

0.557527 Nitric acid/monomethylhydrazine 310

.
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The purpose of this work is to minimize total full requirements, as well known that no
refueling station in space, then using the computed Av in Table (3) for determining the mass
propellant consumed Am, at different specific impulse of the propellants, help us to carefully
plane a mission to minimize the propellant mass carried on the rocket, Table (4) show the
computed (Am/m) at different Ig,.

From Table (4) using the propellant Liquid Oxygen /Liquid hydrogen at I, 455 second

and assumer the mass of spacecraft equal to 2000 kg , the computed.
Am = 0.426 x 2000 kg = 852 kg
While if we use Cold gas with I,=50 sec

We get Am = 0.99*2000kg = 1980kg

1.1000
1.0000 $‘
0.9000 —
0.8000 — N

—~ 0.7000 —

0.6000

0.5000

0.4000

0.3000

0.2000

0.1000

0.0000

(Am/m

0 50 100 150 200 250 300 350 400 450 500
Isp (sec)

Figure (5): Relationship I, in units (sec) and Am/m propellant ratio at Av=9.8 km/sec

Figure (5) represent, the relationship between the I, Specific Impulse of the propellants in
unit of second and Am/m (propellant mass ratio). As seen from figure at constant Av the
Am/m (propellant mass ratio) decreases with increasing the propellant Specific Impulse
therefore this lead to minimize the propellant mass carried all aloft in favor of payload.

Tables (5,6) list position vectors in two different orbits and the computed minimum delta-v
using series solution with the suitable equations (4) to (8) for Hohmann and (14) to (16) for
Bi- elliptic transfer.
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Table (5): Hohmann transfer

position vector components (km) | (delta-v) (km/s) = Flight time (sec) R
Finitiae = 80001+ 0.0 + 0.0k
Ifina = —42166 i—-o0.0j 2.438 42840 5.2
+0.0k
Table (6): Bi-elliptic transfer
position vector components (km) | (delta-v) (km/s) = Flight time (sec) R*
Finitia = 80001+ 0.0 + 0.0k

Ifinal = —421661—0.0]
+0.0k

The Hohmann transfer is the minimum-energy transfer between most but not all coplanar

orbits. In some cases, the Bi-elliptic transfer may use less energy [2]. The computed change in

velocity show that the less change in velocity required in Hohmann than that in Bi-elliptic

transfer.

In Tables (7,8,9) list position vector sin two different or bits with R ratio much than15.58,

the change in velocity required by Bi-elliptic transfer is smaller than that computed in

Hohmann transfer also, therefore from the above concludes that for R ratio less than 11.94

the Hohmann transfer is Appropriate, while for R greater than15.58 the Bi-elliptic saves Av

with an extreme in time.

Table (7): Hohmann transfer

Tfina = 2826881—0.0§+ 0.0k

- (delta-v) = Flight time = Semi-major axis
position vector components (km) R
(kml/s) (sec) (km)
Tinitian = 6569.31+0.0] + 0. ok
3.17 1.17 x 10° 282718 58.2
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Table (8): Bi-elliptic transfer

- (delta-v) = Flight time = Semi-major axis
position vector components (km) R*
(km/s) (sec) (km)

Finitial = 6569.31+0.0] + 0.0k

r, = 4000001 —0.0j+0.0 0.987 2.43 x 10° 391344 60.8
Ifina = 2826881—0.0§+ 0.0k

Table (9): Bi-elliptic transfer

- (delta-v) = Flight time Semi-major R*

position vector components (km) )
(km/s) (sec) axis (km)
Tinitiat = 6569.31+0.0]
+ 0.0k

r, = 529485.581—-0.0J+0.0 | 0.794 3.06 x 10° 456344 80.6

Tfina = 2826881 —-0.0]
+0.0k

The Bi-elliptic transfer requires much longer transfer time computed to the Hohmann

transfer. However Bi-elliptic is more efficient for long distance the change in velocity for

long distance orbit transfer at different R* (the ratio of apogee radius of transfer orbit to initial

orbit) in Bi-elliptic at the same value of the ration R.

The results in Table (7, 8, and 9) show that the Bi-elliptic transfer requires much longer

transfer time computed to the Hohmann transfer. However Bi-elliptic is more efficient for

long distance the change in velocity for long distance orbit transfer at different R* (the ratio of

apogee radius of transfer orbit to initial orbit) in Bi-elliptic at the same value of the ration R.

The results agree with concept that when R* is increase the Av decrease as given in the

reference [1].
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Figure (6): the change in velocity for Bi-elliptic transfer orbit at different R*

Figure (6) represent the relationship between the minimum changes in velocity Av with
respect to R* show that the minimum changes in velocity Av decreases with the increasing R*
which is agree with the concept that the Bi-elliptic transfer perform better as increasing R*

ratio.

5. CONCLUSION

With a complete set of series solutions available for every case of Lambert’s Theorem, it is
possible to apply it for coplanar orbit transfer and gives good results in magnitude of change
of velocity. Using analytical methods for multiple-impulse missions to minimize total fuel
requirements. Computed change in velocity for different types of maneuvers (Hohmann and
Bi-elliptic). The results show that the Hohmann transfer is saves fuel by reduce the change in

velocity and extreme in time.
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